CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4"

Transcript

1 CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo. R:a espello convexo lente converxente espello cóncavo C.2.- Un espello cóncavo ten 80 cm de radio de curvatura. A distancia do obxecto ao espello para que a súa imaxe sexa dereita e 4 veces maior é: a) 50 cm; b) 30 cm; c) 60 cm. R:b ( Ver fig do espello cóncavo da cuestión anterior) C.4. Se na práctica de óptica xeométrica a lente converxente ten unha distancia focal imaxe de +10 cm, a que distancias da lente podes situar o obxecto para obter imaxes sobre a pantalla, se se cumpre que valor absoluto s + valor absoluto de s = 80 cm?. Debuxa a marcha dos raios. R: -11,7 cm e -68,3 cm 2012 C.3. - Se un espello forma unha imaxe real invertida e de maior tamaño que o obxecto, trátase dun espello: a) cóncavo e o obxecto está situado entre o foco e o centro da curvatura; b) cóncavo e o obxecto está situado entre o foco e o espello; c) convexo co obxecto en calquera posición. R: a C.2.- Unha onda de luz é polarizada por un polarizador A e atravesa un segundo polarizador B colocado despois de A. Cal das seguintes afirmacións é correcta con respecto á luz despois de B?: a) non hai luz se A e B son paralelos entre si; b) non hai luz se A e B son perpendiculares entre si; c) hai luz independentemente da orientación relativa de A e B.(xuño-opcA) R: b 2.-C.2. -Para obter unha imaxe na mesma posición en que está colocado o obxecto, que tipo de espello e en que lugar ten que colocarse o obxecto?: a) cóncavo e obxecto situado no centro de curvatura; b) convexo e obxecto situado no centro de curvatura; c) cóncavo e obxecto situado no foco.(set opc A) R: a 2010 IES 12 DE OUTUBRO 1 I. RGUEZ- DPTO- FÍSICA E QUÍMICA

2 1.-C.3.- A luz visible abrangue un rango de frecuencias que vai desde (aproximadamente) 4, Hz (vermello) ata 7, Hz (ultravioleta); cal das seguintes afirmacións é correcta?: a) a luz vermella ten menor lonxitude de onda cá ultravioleta; b) a ultravioleta é a máis enerxética do espectro visible; c) ambas aumentan a lonxitude de onda nun medio con maior índice de refracción có aire. (xuño opc A) R: b. No espectro visible a luz vermella é a de maior lonxitude de onda, e a luz U.V. a de menor λ. A enerxía dun fotón E=hν = hc/λ. h é a constante de Planck; c a velocidade da luz no baleiro, e λ a lonxitude de onda da luz. Polo tanto a luz U.V., de menor λ, é a de maior enerxía. Nun medio de n > 1 as lonxitudes de onda diminúen porque u = c/n (u<c). Como a frecuencia non varía, λ = u/ν, λ = c/ν, λ < λ. 2.-C.4.- Na práctica da lente converxente, debuxa a marcha dos raios se o obxecto se coloca: a) no foco, b) entre o foco e o centro óptico da lente. (xuño 2010, opc A) R:A imaxe depende da posición do obxecto. Para distancias menores que f, a imaxe é virtual, dereita e maior. Se o obxecto se sitúa no foco, non se forma imaxe 3.- C.2.- Se cun instrumento óptico se forma una imaxe virtual, dereita e de maior tamaño que o obxecto, trátase de: a) unha lente diverxente; b) un espello convexo; c) unha lente converxente.(xuño, opc B) R:c. É unha lente converxente, actuando como lupa, co obxecto situado a menor distancia ca focal. (A mesma figura que a cuestión C4 da opción anterior. 4.-C.1.- Cando un raio de luz monocromática pasa desde o aire á auga (nauga = 4/3), prodúcese un cambio: a) na frecuencia; b) na lonxitude de onda; c) na enerxía. (set opc A) R: b. Nun medio de n > 1 as lonxitudes de onda diminúen porque u = c/n (u<c); como a frecuencia non varía, λ = u/ν, λ = c/ν, λ < λ. A lonxitude de onda diminúe. 5.- C.2.- No fondo dunha piscina hai un foco de luz. Observando a superficie da auga veríase luz: a) en toda a piscina; b) só no punto enriba do foco; c) nun círculo de raio R arredor do punto enriba do foco. (set 2010, opc B) R: c. Os raios incidentes na superficie de separación cun ángulo superior ao ángulo límite non se difractan senón que se reflicten, polo que na superficie só se verá iluminado un círculo de raio R sen90º = n senl 6.-C.4.- Cun banco óptico de lonxitude l, obsérvase que a imaxe producida por unha lente converxente é sempre virtual. Explica que ocorre.(set 2010, opc B) R: Trátase dunha lente converxente, sendo a lonxitude do banco óptico l menor cá focal, xa que así a posición do obxecto sempre está a menor distancia có foco e a imaxe é virtual, dereita e de maior tamaño có obxecto IES 12 DE OUTUBRO 2 I. RGUEZ- DPTO- FÍSICA E QUÍMICA

3 BLOQUE 4: LUZ 1.- Para obter unha imaxe virtual, dereita e de maior tamaño que o obxecto, úsase: a) una lente diverxente; b) una lente converxente; c) un espello convexo. (xuño) R: b (Un lente converxente co obxecto entre o foco e o centro, unha lupa) 2.- Unha onda luminosa: a) non se pode polarizar; b) a sua velocidade de propagacion e inversamente proporcional o indice de refraccion do medio; c) pode non ser electromagnetica. (xuño2009) R:(b). O índice de refracción é n= c/u 2008 ( set) BLOQUE 4: LUZ 1.- Se cun espello se quere obter unha imaxe maior que o obxecto, haberá que empregar un espello: a) plano; b) cóncavo; c) convexo. R: cóncavo 2.- Un raio de luz incide dende o aire (n=1) sobre unha lámina de vidro de índice de refracción n =1,5. O ángulo límite para a reflexión total deste raio é: a) 41,8 º; b) 90º; c) non existe. R: c). O pasar dun medio menos refrinxente a un máis refrinxente, o raio refractado acércase á normal. Para calquera ángulo de incidencia, o ángulo de refracción sempre é menor, polo que non hai un ángulo de incidencia límite para o que o raio refractado sexa 90º. n 1 senθ 1 = n 2 senθ 2 1 senl = 1,5sen90 senl = 1,5 (imposible) O valor máximo do seno dun ángulo é O ángulo límite na refracción auga/aire é de 48,61º. Se se posúe outro medio no que a velocidade da luz sexa v medio = 0,878 v auga, o novo ángulo límite (medio/aire) será:a) maior; b) menor; c) non se modifica. ( modelo exame 2008, cues 1) R: b) O ángulo límite e o índice de refracción relaciónanse:i) n 1 senθ l = n aire O índice de refracción é o cociente entre a velocidade da luz no baleiro e no medio n = c/u. Polo tanto para o segundo medio n 2 senθ 2 = n aire ;II) n 2 = c/0.878v agua = n 1 /0.878; comparando I e II n 1 senθ l = (n 1 /0.878)senθ 2 ==> 0,878sen48,61 = senθ 2 ==> θ2 =41,20 e decir o novo ángulo límite e menor. 4.- Nun espello esférico convexo a imaxe que se forma dun obxecto é: a) real invertida e de maior tamaño có obxecto, b) virtual dereita e de menor tamaño có obxecto; c) virtual dereita e de maior tamaño có obxecto. ( modelo exame 2008, cues 1)R:b. Nun espello convexo a imaxe que se forma sempre é virtual, dereita e de menor tamaño que o obxecto 2007 ( xuño) BLOQUE 4: LUZ 1.-Se se desexa formar unha imaxe virtual, dereita e de menor tamaño que o obxecto, débese utilizar: a) un espello cóncavo, b) unha lente converxente, c) unha lente diverxente. R: c. As lentes diverxentes forman unha imaxe virtual dereita e de menor tamaño có obxecto IES 12 DE OUTUBRO 3 I. RGUEZ- DPTO- FÍSICA E QUÍMICA

4 2.- Unha onda electromagnética que se encontra con un obstáculo de tamaño semellante a súa lonxitude de onda: a) forma nunha pantalla colocada detrás do obstáculo, zonas claras e escuras, b) polarízase e o seu campo eléctrico oscila sempre no mesmo plano, c) reflíctese no obstáculo. (xuño 2007, cues 2) R:a) E un fenómeno de difracción. Cando un movemento ondulatorio se atopa cun obstáculo ou cunha fenda de tamaño semellante á súa lonxitude de onda, fórmanse nunha pantalla detrás do obstáculo unha serie de franxas claras ou escuras ( ou aneis) que son produto de interferencia de ondas, e que semella que a luz non se propaga en liña recta. 3.- Cando un raio de luz incide nun medio de menor índice de refracción, o raio refractado: a) varía a súa frecuencia, b) acércase a normal, c) pode non existir raio refractado(set 2007, cues1) R: c). Segundo a lei de Snell: n 1 seni = n 2 senr. Se pasa dun medio mais refrinxente a un menos refrinxente, afástase da normal, polo que, se o ángulo de incidencia é o ángulo límite, ou superior, non hai refracción 4.- Si un feixe de luz láser incide sobre un obxecto de pequeno tamaño (do orde da súa lonxitude de onda), a) detrás do obxecto hai sempre escuridade, b) hai zonas de luz detrás do obxecto, c) reflíctese cara o medio de incidencia. ( set 2007, cues2 ) R: b). E un fenómeno de difracción. Cando un movemento ondulatorio se atopa cun obstáculo ou cunha fenda de tamaño semellante á súa lonxitude de onda, fórmanse nunha pantalla detrás do obstáculo unha serie de zonas claras ou escuras que son produto de interferencia de ondas, e que semella que a luz non se propaga en liña recta Cando a luz atravesa a zona de separación de dous medios, experimenta: a) difracción, b) refracción, c) polarización (xuño 2006, opc 1) R:b) Experimenta refracción (cambio de dirección na propagación rectilínea) segundo a lei de Snell seni n i = senr n r sendo i o ángulo de incidencia no medio no que o índice de refracción é ni, e r o ángulo de refracción no medio no que o índice de refracción é nr 2.- Nas lentes diverxentes a imaxe sempre é: a) dereita, menor e virtual; b) dereita, maior e real; c) dereita, menor e real. (xuño 2006 opción 2) R: a) As imaxes nas lentes diverxentes son sempre menores, virtuais e dereitas. Mesma fig que Na polarización lineal da luz: a) modifícase a frecuencia da onda, b) o campo eléctrico oscila sempre nun mesmo plano, c) non se transporta enerxía.( set 2006, opc 1) R:b) A polarización lineal da luz consiste en que o vector campo eléctrico oscile sempre nun plano que é o plano de polarización. Conséguese por medio dun polarizador. 4.-A imaxe formada nos espellos é: a) real se o espello é convexo, b) virtual se o espello é cóncavo e a distancia obxecto é menor que a focal, c) real se o espello é plano.( setembro 2006 opción 2) R: b) Si o índice de refracción do diamante é 2,52 e o do vidro 1,27: a) a luz propágase con maior velocidade no diamante, b) o ángulo límite entre o diamante e o aire é menor que entre o vidro e o aire, c) cando a luz pasa de diamante a vidro o ángulo de incidencia e maior que o ángulo de refracción. (xuño 2005, opc 2) R A lei de Snell seni.ni = senr.nr. Para ó ángulo límite senl.ni = 1 O índice de refracción n=c/v A luz propágase con maior v no vidro que ten menor índice de refracción O ángulo limite no diamante-aire é menor que o do vidro-aire, porque o índice de refracción do diamante é IES 12 DE OUTUBRO 4 I. RGUEZ- DPTO- FÍSICA E QUÍMICA

5 maior que o do vidro e os dous maiores que o do aire. No diamante-vidro o ángulo de incidencia é menor que o de refracción porque o índice de refracción do diamante é maior que o do vidro. 2.- Cando a luz incide na superficie de separación de dous medios cun ángulo igual ó ángulo límite eso significa que: a) o ángulo de incidencia e o de refracción son complementarios; b) non se observa raio refractado; c) o ángulo de incidencia é maior que o de refracción.( set 2005, opc 2 ) R: Segundo a lei de Snell, se un raio incide co ángulo límite non hai raio refractado, porque o ángulo de refracción é de 90 graos Tres cores da luz visible, o azul o amarelo e o vermello, coinciden en que: a) posúen a mesma enerxía; b) posúen a mesma lonxitude de onda; c) propáganse no baleiro coa mesma velocidade. (xuño 2004, opc 1) R: c) A diferencia entre fotóns E=hν de diferente color e que teñen distinta lonxitude de onda, distinta frecuencia pero os tres se propagan no baleiro a mesma velocidade Un fotón de luz ten unha enerxía E=hν. O que caracteriza a cada cor é a diferencia de lonxitude de onda que crece na orde azul amarelo vermello mentres que a frecuencia diminúe na mesma secuencia. Por outra parte as tres se propagan a mesma velocidade c no baleiro. 2.- O ángulo límite na refracción auga/aire é de 48.61º. Se se posúe outro medio no que a velocidade da luz sexa v medio = 0.878vauga, o novo ángulo límite será: a) maior; b) menor; c) non se modifica.(xuño opc2) ( Igual o nº 3 do 2008)R:b) 3.- A luz xerada polo Sol: a) está formada por ondas electromagnéticas de diferente lonxitude de onda; b) son ondas que se propagan no baleiro a diferentes velocidades; c) son fotóns da mesma enerxía.( set 2004, opc 1) R:a) A luz é un paquete de ondas de diferente lonxitude de onda e diferente frecuencia que se propagan no baleiro a la mesma velocidade. Os fotóns teñen diferente enerxía porque teñen diferente frecuencia. 4.- Dous espellos planos están colocados perpendicularmente entre si. Un raio de luz que se despraza nun terceiro plano perpendicular ós dous, reflíctese sucesivamente nos dous espellos; o raio reflectido no segundo espello, con respecto ó raio orixinal: a) é perpendicular; b) é paralelo; c) depende do ángulo de incidencia. (set 2004, opc 2) R: b). Teñen lugar dous procesos de reflexión e o raio emerxente (facer unha construción dos raios) é paralelo ó raio incidente Nas lentes diverxentes a imaxe sempre é: a) dereita maior e real; b) dereita menor e virtual; c) dereita menor e real. (Xuño 2003, opc 1) R: b) 2.- Cando se observa o fondo dun río en dirección case perpendicular, a profundidade real con relación a aparente é: a) maior; b) menor; c) a mesma. (Dato n agua > n aire ) ( set 2003, opc 1) R: a). Nun dioptro plano a modificación aparente da posición do obxecto depente dos medios refrixentes. S = S n /n. n = n(aire) =1 ; ao ser n < n ==> S < S, é dicir a distancia aparente é menor que a real S Das seguintes ondas cales poden ser polarizadas?: a) ondas sonoras; b) luz visible; c) ondas producidas na superficie da auga. (xuño, opc2) IES 12 DE OUTUBRO 5 I. RGUEZ- DPTO- FÍSICA E QUÍMICA

6 R:b. A xustificación deberá facer mención a polarización das ondas transversais. 2.- Un raio luminoso que viaxa por un medio do que o índice de refracción é n 1, incide con certo ángulo sobre a superficie de separación dun segundo medio de índice de refracción n 2 (n 1 >n 2 ). Respecto do ángulo de incidencia, o de refracción será: a) igual, b) maior; c) menor ( set opc 1) R:b 3.- Nun espello esférico convexo a imaxe que se forma dun obxecto é: a) real invertida e de maior tamaño que o obxecto, b) virtual dereita e de menor tamaño que o obxecto; c) virtual dereita e de maior tamaño que o obxecto. ( set 2002, opc 2) R: b) A enerxía dun cuanto de luz é directamente proporcional a : a) lonxitude de onda; b) frecuencia; c) ó cadrado da velocidade da luz. ( set 2001, opc 1) R: A enerxía dun cuanto de luz, é E=hν sendo h a constante de Planck e ν a frecuencia da radiación Constitúe o fundamento para explicar o efecto fotoeléctrico e o comportamento corpuscular da luz cando interacciona coa materia. λ = c/ν. A enerxía é inversamente proporcional a lonxitude de onda 2.- Cal dos seguintes fenómenos constitúe unha proba da teoría corpuscular da luz?: a) a refracción; b) a difracción; c) o efecto fotoeléctrico.( set 2001, opc 2) R: O efecto fotoeléctrico constitúe un punto de partida para a xustificación da teoría corpuscular da luz o supor que a luz está formada por corpúsculos de enerxía= hν que ó incidir sobre un metal alcalino extrae electróns e si se adopta un dispositivo no baleiro cun ánodo a tensión positiva que atrae ós electróns establécese unha corrente eléctrica detectable e medible experimentalmente. Hai una frecuencia umbral por debaixo da que non hai efecto fotoeléctrico porque a enerxía dos fotóns non e dabondo para arrincar os electróns do metal. Cando a enerxía do fotón excede esta enerxía umbral (traballo de extracción) a diferencia emprégase en enerxía cinética dos electróns arrincados. IES 12 DE OUTUBRO 6 I. RGUEZ- DPTO- FÍSICA E QUÍMICA

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada

Διαβάστε περισσότερα

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU XUÑO 2011 FÍSICA

PAU XUÑO 2011 FÍSICA PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

FISICA 2º BAC 27/01/2007

FISICA 2º BAC 27/01/2007 POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EJERCICIOS DE VIBRACIONES Y ONDAS

EJERCICIOS DE VIBRACIONES Y ONDAS EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)

Διαβάστε περισσότερα

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2004

PAAU (LOXSE) Setembro 2004 PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,

Διαβάστε περισσότερα

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ). 22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio.

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio. Tema 6 Ondas 6-1 Movemento ondulatorio. Clases de ondas 6- Ondas harmónicas. Ecuación de ondas unidimensional 6-3 Enerxía e intensidade das ondas harmónicas 6-4 Principio de Huygens: reflexión e refracción

Διαβάστε περισσότερα

PAU SETEMBRO 2014 FÍSICA

PAU SETEMBRO 2014 FÍSICA PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

A LUZ. ÓPTICA XEOMÉTRICA

A LUZ. ÓPTICA XEOMÉTRICA A LUZ. ÓPTICA XEOMÉTRICA PROBLEMAS. Un espello esférico ten 0,80 m de radio. a) Se o espello é cóncavo, calcular a qué distancia hai que colocar un obxecto para obter unha imaxe real dúas veces maior que

Διαβάστε περισσότερα

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais PROGRAMACIÓN DE AULA MAPA DE CONTIDOS propagan enerxía, pero non materia clasifícanse ONDAS exemplos PROGRAMACIÓN DE AULA E magnitudes características segundo o medio de propagación segundo a dirección

Διαβάστε περισσότερα

A circunferencia e o círculo

A circunferencia e o círculo 10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.

Διαβάστε περισσότερα

Materiais e instrumentos que se poden empregar durante a proba

Materiais e instrumentos que se poden empregar durante a proba 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

Física cuántica. Relatividade especial

Física cuántica. Relatividade especial Tema 8 Física cuántica. Relatividade especial Evolución das ideas acerca da natureza da luz Experimento de Young (da dobre fenda Dualidade onda-corpúsculo Principio de indeterminación de Heisemberg Efecto

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA

PAU XUÑO 2016 FÍSICA PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

Exercicios de Física 01. Gravitación

Exercicios de Física 01. Gravitación Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na

Διαβάστε περισσότερα

Exercicios de Física 02b. Magnetismo

Exercicios de Física 02b. Magnetismo Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado

Διαβάστε περισσότερα

SATÉLITES TERRESTRES E AS SÚAS ÓRBITAS

SATÉLITES TERRESTRES E AS SÚAS ÓRBITAS INTRODUCIÓN O carácter da Física como ciencia experimental fai que as prácticas de laboratorio sexan un complemento imprescindible no ensino desta disciplina. As actividades prácticas poñen aos estudantes

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade

Διαβάστε περισσότερα

LUGARES XEOMÉTRICOS. CÓNICAS

LUGARES XEOMÉTRICOS. CÓNICAS LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.

Διαβάστε περισσότερα

PAU XUÑO 2015 FÍSICA

PAU XUÑO 2015 FÍSICA PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

RADIACIÓNS ÓPTICAS ARTIFICIAIS INCOHERENTES

RADIACIÓNS ÓPTICAS ARTIFICIAIS INCOHERENTES Nº 33 - www.issga.es FRANCISCO JAVIER COPA RODRÍGUEZ Técnico superior en Prevención de Riscos Laborais Instituto Galego de Seguridade e Saúde Laboral Edita: Instituto Galego de Seguridade e Saúde Laboral

Διαβάστε περισσότερα

RADIACTIVIDADE. PROBLEMAS

RADIACTIVIDADE. PROBLEMAS RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de

Διαβάστε περισσότερα

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación: VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó

Διαβάστε περισσότερα

EXERCICIOS DE ÁLXEBRA. PAU GALICIA

EXERCICIOS DE ÁLXEBRA. PAU GALICIA Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M

Διαβάστε περισσότερα

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración.

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración. FÍSICA MODERNA FÍSICA NUCLEAR. PROBLEMAS 1. Un detector de radioactividade mide unha velocidade de desintegración de 15 núcleos min -1. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a)

Διαβάστε περισσότερα

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016 Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro 9 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Indución electromagnética

Indución electromagnética Indución electromagnética 1 Indución electromagnética 1. EXPERIECIA DE FARADAY E HERY. A experiencia de Oersted (1820) demostrou que unha corrente eléctrica crea ao seu redor un campo magnético. Como consecuencia

Διαβάστε περισσότερα

Trigonometría. Obxectivos. Antes de empezar.

Trigonometría. Obxectivos. Antes de empezar. 7 Trigonometría Obxectivos Nesta quincena aprenderás a: Calcular as razóns trigonométricas dun ángulo. Calcular todas as razóns trigonométricas dun ángulo a partir dunha delas. Resolver triángulos rectángulos

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 138 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 138 Definición Elementos dun poliedro 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot

Διαβάστε περισσότερα

1.- Movemento Ondulatorio. Clases de onda! Ondas Harmónias. Función de onda unidimensional! Enerxía! 5

1.- Movemento Ondulatorio. Clases de onda! Ondas Harmónias. Función de onda unidimensional! Enerxía! 5 1.- Moeento Ondulatorio. Clases de onda!.- Ondas Harónias. Función de onda unidiensional! 3 3.- Enerxía! 5 3.1.- Absorción!... 6 4.- Principio de HUYGENS! 6 4.1.- Reflexión!... 6 4..- Refracción!... 7

Διαβάστε περισσότερα

PAU XUÑO 2013 FÍSICA

PAU XUÑO 2013 FÍSICA PAU XUÑO 2013 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exercicios de Física 03a. Vibracións

Exercicios de Física 03a. Vibracións Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal

Διαβάστε περισσότερα

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación As Mareas INDICE 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación Introducción A marea é a variación do nivel da superficie libre

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A ou B ) de cada bloque. Todos os problemas puntúan igual, é dicir,

Διαβάστε περισσότερα

CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo.

CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo. Estatística Contidos 1. Facer estatística Necesidade Poboación e mostra Variables 2. Reconto e gráficos Reconto de datos Gráficos Agrupación de datos en intervalos 3. Medidas de centralización e posición

Διαβάστε περισσότερα

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos VIII. ESPZO EULÍDEO TRIDIMENSIONL: Áglos perpediclaridade de rectas e plaos.- Áglo qe forma dúas rectas O áglo de dúas rectas qe se corta se defie como o meor dos áglos qe forma o plao qe determia. O áglo

Διαβάστε περισσότερα

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson 1 La teoría de Jeans El caso ás siple de evolución de fluctuaciones es el de un fluído no relativista. las ecuaciones básicas son: a conservación del núero de partículas n t + (n v = 0 (1 b Navier-Stokes

Διαβάστε περισσότερα

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato O enlace químico 3 1

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato O enlace químico 3 1 UNIÓNS ENTRE ÁTOMOS, AS MOLÉCULAS E OS CRISTAIS Até agora estudamos os átomos como entidades illadas, pero isto rara vez ocorre na realidade xa que o máis frecuente é que os átomos estea influenciados

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

Áreas de corpos xeométricos

Áreas de corpos xeométricos 9 Áreas de corpos xeométricos Obxectivos Nesta quincena aprenderás a: Antes de empezar 1.Área dos prismas....... páx.164 Área dos prismas Calcular a área de prismas rectos de calquera número de caras.

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα

TEORÍA DE XEOMETRÍA. 1º ESO

TEORÍA DE XEOMETRÍA. 1º ESO TEORÍA DE XEOMETRÍA. 1º ESO 1. CORPOS XEOMÉTRICOS No noso entorno observamos continuamente obxectos de diversas formas: pelotas, botes, caixas, pirámides, etc. Todos estes obxectos son corpos xeométricos.

Διαβάστε περισσότερα

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119 Página 0. a) b) π 4 π x 0 4 π π / 0 π / x 0º 0 x π π. 0 rad 0 π π rad 0 4 π 0 π rad 0 π 0 π / 4. rad 4º 4 π π 0 π / rad 0º π π 0 π / rad 0º π 4. De izquierda a derecha: 4 80 π rad π / rad 0 Página 0. tg

Διαβάστε περισσότερα

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato Estrutura atómica 2 1

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato Estrutura atómica 2 1 As leis ponderais e volumétricas, estudadas no anterior tema, analizadas á luz da teoría atómica que hoxe manexamos resultan ser unha consecuencia lóxica da mesma, pero non debemos esquecer que historicamente

Διαβάστε περισσότερα

ENERXÍA, TRABALLO E POTENCIA

ENERXÍA, TRABALLO E POTENCIA NRXÍA, TRABALLO POTNCIA NRXÍA Pódese definir enerxía coo a capacidade que ten un corpo para realizar transforacións nel eso ou noutros corpos. A unidade de enerxía no SI é o Joule (J) pero é frecuente

Διαβάστε περισσότερα

την..., επειδή... Se usa cuando se cree que el punto de vista del otro es válido, pero no se concuerda completamente

την..., επειδή... Se usa cuando se cree que el punto de vista del otro es válido, pero no se concuerda completamente - Concordar En términos generales, coincido con X por Se usa cuando se concuerda con el punto de vista de otro Uno tiende a concordar con X ya Se usa cuando se concuerda con el punto de vista de otro Comprendo

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA OPCIÓN A

PAU XUÑO 2016 FÍSICA OPCIÓN A PAU Código: 25 XUÑO 2016 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución ás

Διαβάστε περισσότερα

Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2

Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2 Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2 1.1 Concepto de corrente eléctrica...2 1.1 Concepto de corrente eléctrica...2 1.2 Características dun circuíto de corrente

Διαβάστε περισσότερα

13 Estrutura interna e composición da Terra

13 Estrutura interna e composición da Terra 13 composición da Terra EN PORTADA: Un mensaxeiro con diamantes En Kimberley (África do Sur) atópase unha das minas de diamantes máis importantes do planeta. En honor a esa cidade, déuselle o nome de kimberlita

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEIS DE KEPLER 1. O peíodo de otación da Tea aedo do Sol é un ano e o aio da óbita é 1,5 10¹¹ m. Se Xúpite ten un peíodo de apoximadamente 12 anos, e se

Διαβάστε περισσότερα

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles.

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles. 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Distinguir as clases de corpos xeométricos. Construíloss a partir do seu desenvolvemento plano. Calcular as súas áreas e volumes. Localizar

Διαβάστε περισσότερα

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl CUANTIFICACIÖN 26/VI/2013 S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA - ESPECTROFOTÓMETRO: Cuantificación da concentración do ADN extraido. Medimos a absorbancia a dúas lonxitudes

Διαβάστε περισσότερα

Números reais. Obxectivos. Antes de empezar.

Números reais. Obxectivos. Antes de empezar. 1 Números reais Obxectivos Nesta quincena aprenderás a: Clasificar os números reais en racionais e irracionais. Aproximar números con decimais ata unha orde dada. Calcular a cota de erro dunha aproximación.

Διαβάστε περισσότερα

O SOL E A ENERXÍA SOLAR

O SOL E A ENERXÍA SOLAR O SOL E A ENERXÍA SOLAR Resumo: Cos exercicios que se propoñen nesta unidade preténdese que os alumnos coñezan o Sol un pouco mellor. Danse as ferramentas necesarias para calcular a enerxía solar que se

Διαβάστε περισσότερα

Estudo dun CD-ROM. Unha experiencia interdisciplinar. Experiencia Down. Experiencia Titoría. outros artigos

Estudo dun CD-ROM. Unha experiencia interdisciplinar. Experiencia Down. Experiencia Titoría. outros artigos buscar... foro nomes propios opinión actualidade entrevista a nosa escola experiencias investigación Estudo dun CD-ROM Unha experiencia interdisciplinar Enric Ripoll Mira Departamento de Física e Química

Διαβάστε περισσότερα

Uso e transformación da enerxía

Uso e transformación da enerxía Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 4 Unidade didáctica 5 Uso e transformación da enerxía Páxina 1 de 50 Índice 1. Introdución...3

Διαβάστε περισσότερα

Radiotelescopios. Resumo: Contidos: Nivel: Segundo ciclo de ESO e Bacharelato

Radiotelescopios. Resumo: Contidos: Nivel: Segundo ciclo de ESO e Bacharelato Radiotelescopios Resumo: Nesta unidade introdúcense os alumnos no estudo dos radiotelescopios mediante a comparación destes cos telescopios ópticos, a explicación do seu funcionamento e a descrición das

Διαβάστε περισσότερα

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA PAAU (LOXSE) XUÑO 2001 Código: 22 ÍSICA Elixir e desenrolar unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións

Διαβάστε περισσότερα

PROBLEMAS DE SELECTIVIDADE: EQUILIBRIO QUÍMICO

PROBLEMAS DE SELECTIVIDADE: EQUILIBRIO QUÍMICO PROBLEMAS DE SELECTIVIDADE: EQUILIBRIO QUÍMICO 3013 2. Para a seguinte reacción: 2NaHCO 3(s) Na 2 CO 3(s) + CO 2(g) + H 2 O (g) ΔH

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Puntuación máima dos eercicios de cada opción: eercicio 1= 3 puntos, eercicio = 3 puntos, eercicio

Διαβάστε περισσότερα

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO 1. Punto e recta 2. Lugares xeométricos 3. Ángulos 4. Trazado de paralelas e perpendiculares con escuadro e cartabón 5. Operacións elementais 6. Trazado de ángulos

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 3: MEDIDAS NOS CIRCUÍTOS ELÉCTRICOS (Elixir A ou B)

ELECTROTECNIA. BLOQUE 3: MEDIDAS NOS CIRCUÍTOS ELÉCTRICOS (Elixir A ou B) 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A o B ) de cada bloque. Todos os problemas puntúan do mesmo xeito,

Διαβάστε περισσότερα

1. Formato da proba [CS.PE.B02]

1. Formato da proba [CS.PE.B02] Páxina 1 de 9 [CS.PE.02] 1. Formato da proba Formato A proba consta de vinte cuestións, distribuídas deste xeito: Problema 1: tres cuestións tipo test. Problema 2: tres cuestións tipo test. Problema 3:

Διαβάστε περισσότερα

1.- Carga eléctrica. Cuantización Lei de Coulomb Traballo Campo Electrostático Potencial Electrostático 6

1.- Carga eléctrica. Cuantización Lei de Coulomb Traballo Campo Electrostático Potencial Electrostático 6 CMPO ELECTROSTÁTICO 1.- Carga eléctrica. Cuantización 1.1. Tipo de carga:.- Lei de Coulomb 3 3.- Traballo 4 3.1.-Enerxía Potencial Electrotática 5 4.- Campo Electrotático 5 5.- Potencial Electrotático

Διαβάστε περισσότερα

Problemas resueltos del teorema de Bolzano

Problemas resueltos del teorema de Bolzano Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont

Διαβάστε περισσότερα

Ámbito científico tecnolóxico. Xeometría. Unidade didáctica 2. Módulo 3. Educación a distancia semipresencial

Ámbito científico tecnolóxico. Xeometría. Unidade didáctica 2. Módulo 3. Educación a distancia semipresencial Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 3 Unidade didáctica 2 Xeometría Índice 1. Introdución... 3 1.1 Descrición da unidade

Διαβάστε περισσότερα

2.6 Teoría atómica (unha longa historia)

2.6 Teoría atómica (unha longa historia) 2.6 Teoría atómica (unha longa historia) Milleiros de resultados experimentais avalan a idea de que as partículas que forman os gases, os sólidos e os líquidos, en todo o universo, están constituídas por

Διαβάστε περισσότερα

REACCIÓNS DE TRANSFERENCIA DE PROTÓNS

REACCIÓNS DE TRANSFERENCIA DE PROTÓNS REACCIÓNS DE TRANSFERENCIA DE PROTÓNS 1. Concepto de ácido e base segundo as teorías de Arrhenius e Brönsted-Lowry. 2. Concepto de par ácido-base conxugado. 3. Forza relativa dos ácidos e bases. Grao de

Διαβάστε περισσότερα

A onda posterior influe na onda frontal

A onda posterior influe na onda frontal Xullo Xermade A onda posterior influe na onda frontal Onda de presión cando o cono vai hacia atras Onda de presión cando o cono vai hacia diante λ = v/f λ f = v/λ Caixa doméstica Caixa profesional

Διαβάστε περισσότερα

PROBLEMAS E CUESTIÓNS DE SELECTIVIDADE

PROBLEMAS E CUESTIÓNS DE SELECTIVIDADE PROBLEMAS E CUESTIÓNS DE SELECTIVIDADE O KMnO en presenza de H SO transforma o FeSO en Fe (SO ), formándose tamén K SO, MnSO e auga: a) Axusta a reacción molecular. b) Cantos cm de disolución de KMnO 0,5

Διαβάστε περισσότερα

CALCULO DA CONSTANTE ELASTICA DUN RESORTE

CALCULO DA CONSTANTE ELASTICA DUN RESORTE 11 IES A CAÑIZA Traballo de Física CALCULO DA CONSTANTE ELASTICA DUN RESORTE Alumno: Carlos Fidalgo Giráldez Profesor: Enric Ripoll Mira Febrero 2015 1. Obxectivos O obxectivo da seguinte practica é comprobar,

Διαβάστε περισσότερα

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( )

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( ) .. MATEMÁTICAS I PENDENTES (º PARTE) a) Calcula m de modo que o produto escalar de a(, ) e b( m, 5 ) sea igual a 5. b) Calcula a proección de a sobre c, sendo c,. ( ) 5 Se (, ) e y,. Calcula: a) Un vector

Διαβάστε περισσότερα