ÓPTICA- A LUZ Problemas PAAU

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ÓPTICA- A LUZ Problemas PAAU"

Transcript

1 ÓPTICA- A LUZ Problemas PAAU XUÑO-96 CUESTION 2. opa Disponse de luz monocromática capaz de extraer electróns dun metal. A medida que medra a lonxitude de onda da luz incidente, a) os electróns emitidos son máis enerxéticos; b) os electróns emitidos son menos enerxéticos, c) a luz monocromática non é capaz de extraer electróns. SETEMBRO XUÑO-97 Un raio luminoso que viaxa por un medio no que o índice de refracción é n, incide con certo ángulo sobre a superficie de separación dun segundo medio de índice n (n`>n). Respecto do ángulo de incidencia, o de refracción será: a) igual, b) maior, c) menor. CUESTION PRACTICA. opb Fai un esquema da práctica de óptica, situando o obxecto, a lente e a imaxe, debuxando a marcha dos raios. SETEMBRO-97 CUESTION 3. opb Nunha lente converxente, os raios que saen do foco obxecto: a) converxen no foco imaxe; b) emerxen paralelos, c) non se desvían. XUÑO SETEMBRO-98 O atravesar unha lente delgada, un raio paralelo o eixe óptico. a) non se desvía; b) desvíase sempre, c) desvíase ou non dependendo do tipo de lente. CUESTION PRACTICA. opb Na práctica de óptica, púidose e cómo determina-la distancia focal da lente? XUÑO-99 CUESTION PRÁCTICA Nunha lente converxente, un obxecto atópase a unha distancia s maior que o dobre da focal (2f). Fai un esquema da marcha dos raios e explica qué clase de imaxe se forma (real ou virtual, dereita ou invertida) e qué ocorre co aumento. SETEMBRO-99 Cando se observa en dirección casi perpendicular un obxecto no fondo dun río a profundidade aparente observada: a) é maior ca real; b) menor ca real, c) igual á real. CUESTION 3. opb No efecto Compton orixínanse: a) fotóns de maior lonxitude de onda e electróns acelerados; b) fotóns de menor e maior frecuencia que os incidentes, c) electróns acelerados. XUÑO-00 CUESTION PRACTICA. opb Qué clases de imaxes se forman nunha lente converxente si o obxecto se atopa a unha distancia inferior á focal?, e si se atopa na focal?. Debuxa a marcha dos raios.

2 SETEMBRO- 00 CUESTION PRÁCTICA. opa Cunha lente converxente deséxase formar unha imaxe virtual, dereita e aumentada. Onde debe colocarse o obxecto?. Fai un esquema da práctica. CUESTION 2. opb No efecto fotoeléctrico, cando un fotón interacciona ca materia: a) transfórmase nun fotón de menor enerxía e en enerxía cinética de electróns; b) emprégase en arrincar e acelerar electróns do metal e el desaparece;c) transfórmase en dous fotóns de menor enerxía. XUÑO-01 CUESTION 1. opa A cantidade de movemento dun fotón ven expresada por: a) p= mc 2 ; b) p= hν; c) p= h/λ. CUESTION PRACTICA. opa Cunha lente converxente debuxa a marcha dos raios e o tipo de imaxe en cada un destes dous casos: a) si a distancia obxecto s e igual ó dobre da focal (2f); b) si a distancia obxecto é igual a focal (f). SETEMBRO-01 A enerxía dun cuanto de luz é directamente proporcional a: a) a lonxitude de onda; b) frecuencia; c) o cadrado da velocidade da luz. CUESTION PRACTICA. opa Fai un esquema gráfico explicando cómo podes usar unha lente converxente como lupa de aumento. CUESTION 3. opb Cal dos seguintes fenómenos constitúe unha proba da teoría corpuscular da luz?: a) a refracción; b) a difracción; c) o efecto fotoeléctrico. XUÑO-02 PROBLEMA 2. opa Nunha célula fotoeléctrica, o cátodo metálico ilumínase cunha radiación de λ= 175 nm, o potencial de freado para os electróns é de 1 voltio. Cando se usa luz de 200 nm, o potencial de freado é de 1,86 V. Calcula: a) O traballo de extracción do metal e a constante de Planck h; b) Producirase efecto fotoeléctrico se se iluminase con luz de 250 nm?. (Datos: e= 1,6*10-19 C; c= 3*10 8 m/s; 1m=10 9 nm) NOTA: (Os datos do problema son incorrectos. Os valores de l deben intercambiarse para obter unha solución apropiada) CUESTION PRÁCTICA. opa Na práctica da lente converxente debuxa a marcha dos raios e o tipo de imaxe formada dun obxecto cando: a) se sitúa entre o foco e o centro óptico; b) se sitúa no foco. PROBLEMA 2. OpB Un espello esférico forma unha imaxe virtual, dereita e de tamaño dobre co obxecto cando este está situado verticalmente sobre o eixe óptico e a 10 cm do espello. Calcula: a) A posición da imaxe; b) O radio de curvatura do espello. Debuxa a marcha dos raios.

3 SETEMBRO-02 Un raio luminoso que viaxa por un medio do que o índice de refracción é n 1, incide con certo ántulo sobre a superficie de separación dun segundo medio de índice de refracción n 2 (n 1 >n 2 ). Respecto do ángulo de incidencia, o de refracción será: a) igual, b) maior; c) menor. CUESTION PRÁCTICA. opa Nunha lente converxente, se se coloca un obxecto entre o foco e a lente, cómo é a imaxe?. (Debuxa a marcha dos raios) PROBLEMA 1. opb O traballo de extracción de electróns nun metal é de 5*10-19 J. Unha luz de lonxitude de onda 375 nm, incide sobre o metal; calcula: a) a frecuencia umbral. b) a enerxía cinética dos electróns extraídos. (Datos: h= 6,62*10-34 Js, c= 3*10 8 m/s; 1m=10 9 nm) CUESTION 1 opb Nun espello esférico convexo a imaxe que se forma dun obxecto é: a) real invertida e de maior tamaño có obxecto, b) virtual dereita e de menor tamaño có obxecto; c) virtual dereita e de maior tamaño có obxecto. XUÑO-03 Nas lentes diverxentes a imaxe sempre é: a) Dereita, maior e real; b) Dereita, menor e virtual; c) Dereita, menor e real. PROBLEMA 2. op B Un obxecto de 3 cm de altura sitúase a 75 cm e verticalmente sobre o eixe dunha lente delgada converxente de 25 cm de distancia focal. Calcula: a) A posición da imaxe; b) O tamaño da imaxe. (Fai un debuxo do problema) CUESTION 3. opb No efecto fotoeléctrico: a) A enerxía cinética dos electróns emitidos depende da intensidade da luz incidente; b) Hai unha frecuencia mínima para a luz incidente; c) O traballo de extracción non depende da natureza do metal. SETEMBRO-03 CUESTION 1. opa Cando se observa o fondo dun río en dirección casi perpendicular, a profundidade real con relación a aparente é: a) Maior; b) Menor; c) A mesma. (Dato n auga >n aire ) PROBLEMA 1. opb Si o traballo de extracción para certo metal é 5, J. Calcula: a) A frecuencia umbral por debaixo da cal non hai efecto fotoeléctrico nese metal. b) O potencial de freado que se debe aplicar para que os electróns emitidos non cheguen ó ánodo si a luz incidente é de 320 nm. (Datos: c= m/s; h= 6, Js; 1 nm= 10-9 m; qe= 1, C) PROBLEMA 2. opb O ángulo límite vidro-auga é de 60 º (n a = 1,33). Un raio de luz que se propaga no vidro incide sobre a superficie de separación cun ángulo de 45 º refractándose dentro da auga. Calcula: a) O índice de refracción do vidro; b) O ángulo de refracción na auga. CUESTION 2. opb Da hipótese de De Broglie, dualidade onda-corpúsculo, derívase como consecuencia: a)que os electróns poden mostrar comportamento ondulatorio λ= h/p); b) Que a enerxía das partículas atómicas está cuantizada, E=hν; c) Que a enerxía total dunha partícula é E= mc 2.

4 CUESTION PRACTICA. opb Qué clase de imaxes se forman nunha lente converxente si o obxecto se atopa a unha distancia superior ó dobre da distancia focal?. Fai unha representación gráfica. XUÑO-04 Tres cores da luz visible, o azul, o amarelo e o vermello, coinciden en que: a)posúen a mesma enerxía; b) posúen a mesma lonxitude de onda; c) propáganse no baleiro coa mesma velocidade. CUESTION PRÁCTICA. opa Na práctica da lente converxente explica si hai algunha posición do obxecto para a que a imaxe sexa virtual e dereita, e outra para a que a imaxe sexa real e invertida e do mesmo tamaño co obxecto. CUESTION 1. opb O ángulo límite na refracción auga/aire é de 48,61º. Si se posúe outro medio no que a velocidade da luz sexa v medio = 0,878 v auga, o novo ángulo límite (medio/aire) será: a) maior; b) menor; c) non se modifica. SETEMBRO-04 PROBLEMA 2. opa Un obxecto de 5 cm de altura, está situado a unha distancia x do vértice dun espello esférico cóncavo, de 1m de radio de curvatura; calcula a posición e tamaño da imaxe: a) si x= 75 cm. b) si x= 25 cm. (nos dous casos debuxa a marcha dos raios) A luz xerada polo Sol: a) está formada por ondas electromagnéticas de diferentes lonxitudes de onda, b) son ondas que se propagan no baleiro a diferentes velocidades; c) son fotóns da mesma enerxía. CUESTION 2. opb Cando se dispersan raios X en grafito, obsérvase que emerxen fotóns de menor enerxía que a incidente e electróns de alta velocidade. Este fenómeno pode explicarse por: a)unha colisión totalmente inelástica entre un fotón e un átomo; b) elástica entre un fotón e un electrón; c) elástica entre dous fotóns. CUESTION 3. opb Dous espellos planos están colocados perpendicularmente entre sí. Un raio de luz que se despraza nun terceiro plano perpendicular ósdous, reflíctese sucesivamente nos dous espellos; o raio reflectido no segundo espello, con respecto ó raio orixinal: a) é perpendicular; b) é paralelo; c) depende do ángulo de incidencia. XUÑO-05 PROBLEMA 1. op A 0 traballo de extracción do cátodo metálico nunha célula fotoeléctrica é 3,32 ev. Sobre el incide radiación de lonxitude de onda λ= 325 nm; calcula: a) a velocidade máxima con que son emitidos os electróns b) o potencial de freado. (Datos lev = 1, J; 1e = 1, C, 1 nm= 10-9 m; m = 9, kg ; c= m/s; h= 6, J.s). CUESTION PRÁCTICA. opa Disponse dun proxector cunha lente delgada converxente, e deséxase proxectar unha transparencia de xeito que a imaxe sexa real e invertida e maior co obxecto. Explica cómo facelo; (fai un debuxo mostrando a traxectoria dos raios). CUESTION 3. opb Si o índice de refracción do diamante é 2,52 e o do vidro 1,27: a) a luz propágase con maior velocidade no diamante, b) o ángulo límite entre o diamante e o aire é menor que entre o vidro e o aire, c) cando a luz pasa de diamante a vidro o ángulo de incidencia e maior que o ángulo de refracción.

5 SETEMBRO-05 PROBLEMA 2. opa Un espello esférico cóncavo ten un radio de curvatura de 0,5 m. Determina analítica e graficamente a posición e o aumento da imaxe dun obxecto de 5 cm de altura situado en dúas posicións diferentes: a) a 1 m do espello; b) a 0,30 m do espello. CUESTION 2. opb Cando a luz incide na superficie de separación de dous medios cun ángulo igual ó ángulo límite eso significa que: a) o ángulo de incidencia e o de refracción son complementarios; b) non se observa raio refractado; c) o ángulo de incidencia é maior que o de refracción. CUESTION PRÁCTICA. OpB Na práctica da lente converxente, fai un esquema da montaxe experimental seguida no laboratorio, explicando brevemente a misión de cada un dos elementos empregados. XUÑO-06 PROBLEMA 2. op A. Dado un espello esférico de 50 cm de radio e un obxecto de 5 cm de altura situados obre o eixe óptico a unha distancia de 30 cm do espello, calcula analítica e graficamente a posición e tamaño da imaxe: a) Se o espello é cóncavo; b) Se o espello é convexo. CUESTION 3. op A. Cando a luz atravesa a zona de separación de dous medios, experimenta: a) difracción, b) refracción, c) polarización. CUESTION 3 op. B. Nas lentes diverxentes a imaxe sempre é: a) dereita, menor e virtual; b) dereita, maior e real; c) dereita, menor e real SETEMBRO-06 PROBLEMA 2. op A. Un obxecto de 3 cm de altura colócase a 20 cm dunha lente delgada de 15 cm de focal;: calcula analítica e graficamente a posición e tamaño da imaxe; a) se a lente é converxente; b) se a lente é diverxente. CUESTION 2. op A. Na polarización lineal da luz: a) modificase a frecuencia da onda, b) o campo eléctrico oscila sempre nun mesmo plano, c) non se transporta enerxía. CUESTION 2. op B. A imaxe formada nos espellos é: a) real se o espello é convexo, b) virtual se o espello é cóncavo e a distancia obxecto é menor que a focal, c) real se o espello é plano. CUESTION PRÁCTICA. op B. Disponse dunha lente delgada converxente, describe brevemente un procedemento para coñecer o valor da súa focal.

6 ÓPTICA- A LUZ PROBLEMAS 1.- Un raio luminoso incide na superficie dun bloque de vidrio cun ángulo de incidencia de 50º. Calcular as direccións dos raios: a) reflectido b) refractado DATO: O índice de refracción do vidrio é = sen 50º/ sen r SOLUCIÓN a) O raio reflectido forma coa normal un ángulo de 50º, igual ó de incidencia i b) O raio refractado formará coa normal un ángulo r Como o índice de refracción respecto do aire n = n vidro /n aire = sen i /sen r sen r = r = 30 7º 2.- Un espello esférico cóncavo ten un radio de curvatura de 1 5 m. Determinar: a) a posición da imaxe dun obxeto situado diante do espello a unha distancia de 1 m. b) a altura da imaxe, dun obxeto real de 10 cm de altura. SOLUCIÓN A distancia focal é igual a mitade do radio de curvatura do espello f = R/2 ; como o espello é cóncavo, o seu radio de curvatura é negativo f = m/2 = m a) A posición da imaxe obtémola a partir da ecuación fundamental dos espellos esféricos: 1/s + 1/s = 1/f ; 1/s + 1/(-1) = 1/( ) s = - 3 m a imaxe é real xa que s é negativa e está a 3 metros diante do espello b) O tamaño da imaxe obtémolo a partir da ecuación do aumento lateral: M L = y / y = - s / s ; y / 0 1 = - (- 3) / (- 1) y = m Como y é negativa, a imaxe é invertida e, neste caso de maior tamaño que o obxecto.

7 3.- Un obxecto de 6 cm de altura está situada a unha distancia de 30 cm dun espello esférico convexo de 40 cm de radio. Determinar: a) a posición da imaxe. b) o tamaño da imaxe. 0 4 /2 = 0 2 m = f SOLUCIÓN a) 1/ s + 1/(-0 3) = 1 / 0 2 s = 0 12 m a imaxe é virtual xa que s é positivo b) y / 0 06 = - (0 12) / (- 0 3) = m a imaxe é dereita, xa que y é positivo, é de menor tamaño 4.- Un obxecto de 4 cm de altura, está situado 20 cm diante dunha lente delgada converxente de distancia focal 12 cm. Determinar: a) a posición da imaxe. b) o tamaño da imaxe. SOLUCIÓN a) A posición da imaxe calculámola a partir da ecuación fundamental das lentes delgadas 1/s - 1/s = 1/f 1/s 1/(-0 2) = 1/0 12 s = 0 3 m a imaxe é real xa que s é positiva b) O tamaño da imaxe obténse aplicando a ecuación do aumento lateral da lente M L = y / y = s / s y / 0 04 = 0 3 / (- 0 2) y = m O signo negativo indícanos que a imaxe é invertida. 5.- En qué posicións se poderá colocar unha lente converxente de + 15 cm de distancia focal imaxe, para obte-la imaxe dun obxecto sobre unha pantalla situada a 80 cm de él. SOLUCIÓN A suma dos valores absolutos de s e s será 80 cm; tendo en conta que s e positivo s negativo, teremos que s = s Aplicando a ecuación das lentes

8 1/(0 8 + s) - 1/s = 1/ 0 15 s s = 0 s = m y s = m As dúas posicións son a 20 cm e 60 cm do obxecto 6.- a) Cal é a potencia dun sistema formado por unha lente converxente de 2 dioptrìas e outra diverxente de 4 5 dioptrías? b) Cal é a distancia focal do sistema? SOLUCIÓN a) P = P 1 + P 2 = 2 + (- 4 5) = dioptrías b) P = 1/ f f = 1/ (- 2 5) = m CUESTIÓNS 1.- A teoría ondulatoria de Huygens sobre a natureza da luz vén confirmada polos fenómenos: a. Reflexión e formación de sombras. b. Refracción e interferencias. c. Efecto fotoeléctrico e efecto Compton. Huygens explicou a reflexión e a refracción da luz a partir da consideración de que no foco luminoso se orixina unha fronte de ondas que se propaga polo espacio. A enerxía estaría distribuída uniformemente por todo o frente de ondas. 2.- Cando un raio de luz pasa do aire a auga, non cambia a: a. Velocidade de propagación. b. Frecuencia. c. Lonxitude de onda. Cando un raio de luz cambia de medio, está a modifica-la súa velocidade de propagación xa que se altera a súa lonxitude de onda. A frecuencia non cambia porque o foco emisor é o mesmo, e a frecuencia depende dese foco

9 emisor. No paso do aire á auga prodúcese un cambio nas características do medio de propagación, polo tanto, do espacio e nas características espaciais da onda, pero non nas temporais. As características exclusivamente temporais dunha onda son frecuencia e período. 3.- Para afeitarse, unha persoa precisa ve-la súa imaxe dereita e do maior tamaño posible. Que clase de espello debe usar? a. Plano. b. Cóncavo. c. Convexo Deberá empregar un espello que permita a obtención de imaxes aumentadas, de aí que o espello deba ser cóncavo, colocándose entre o foco e o punto O. Dita construcción corresponde a unha distancia entre obxecto e espello inferior á distancia focal 4.- Cando a luz pasa dun medio a outro de distinto índice de refracción, o ángulo de refracción é: SOL.: c a. Sempre maior que o de incidencia. b. Sempre menor que o de incidencia. c. Depende dos índices de refracción. Aplicando a 2ª lei de Snell: n 1.senε 1 = n 2 senε 2 => n 1 / n 2 = senε 2 /senε 1 A relación entre os ángulos dependerá da relación dos índices de refracción. 5.- Nas lentes diverxentes a imaxe sempre é: a) Dereita, menor e virtual. b) Dereita, maior e real. c) Dereita, menor e real.

10 SOL.: a Dacordo coa representación gráfica: 6.- Nas lentes converxentes a imaxe é: SOL.: c a. Dereita, menor e virtual. b. Dereita maior e real. c. Depende da posición do obxecto. Dependerá da posición relativa do obxecto respecto do foco e do centro da lente. Depende da posición do obxecto, xa que se está máis separado da lente que 2 veces a distancia focal, terá unha imaxe real, invertida e menor. Cunha separación igual a 2f, a imaxe será real, invertida e do mesmo tamaño. Se está situado entre f e 2f, a imaxe será real, invertida e maior. Para distancias menores, a imaxe é virtual, dereita e maior. 7.- Dispomos dun espello convexo de radio de curvatura 1 m. Como é a imaxe dun obxecto real?. a. Real, invertida e de menor tamaño. b. Virtual, invertida e de maior tamaño. c. Virtual, dereita e de menor tamaño. SOL.: c

11 De acordo coa marcha dos raios: 8.- O efecto fotoeléctrico, que tipo de característica da luz pon de manifesto? a. O seu carácter corpuscular. b. O seu carácter ondulatorio. c. Ningún dos dous. SOL.: a Manifesta o carácter corpuscular ó actuar os raios de luz como partículas (fotóns) que impactan de xeito cuantizado contra os electróns. Segundo a teoría fotónica de Einstein, que permite explica-lo efecto fotoeléctrico, a luz é un fluxo contínuo de partículas, sen masa en repouso, chamadas fotóns, cunha enerxía relacionada coa frecuencia segundo E= hν 9. De que depende a emisión de fotoelectróns nunha célula fotoeléctrica?. a. Da intensidade da luz incidente. b. Da frecuencia da luz incidente. c. Da distancia entre os electrodos. A emisión de fotoelectróns dependerá de que a enerxía dos fotóns incidentes sexa superior a un valor umbral carácterístico para cada metal. Dita enerxía depende da frecuencia segundo a ecuación de Planck: E= hν. A emisión ou non de electróns depende da frecuencia da luz incidente, isto é, da enerxía de cada raio dos que impacta. Só unha vez cumprido un mínimo de enerxía por raio, extraeránse máis electróns canto máis intensidade de luz se dispoña. 10. Ó colocar un obxecto a 15 cm de distancia dunha lente converxente de 30 cm de distancia focal. A imaxe formada é: a. Real, invertida e aumentada. b. Virtual, dereita e aumentada. c. Real, dereita e reducida.

12 Facendo a marcha dos raios correspondente resultará que a imaxe será virtual, dereita e aumentada. 11. Nos autobuses urbanos colócase un espello sobre a porta para que o conductor poida observa-lo interior do autobús na súa totalidade. Como é o espello?. SOL. b. a. Cóncavo. b. Convexo. c. Plano. A solución é escollida de tal xeito que en calquera caso, a imaxe dun obxecto se vexa na área espellada, para o que é necesario reduci-lo tamaño da imaxe respecto do obxecto, cousa que se consegue cos espellos convexos As gafas de corrección da miopía usan lentes que son: a. Converxentes. b. Diverxentes. c. Doutro tipo. As lentes de corrección da miopía úsanse para que unha imaxe que se forma adiantada se forme máis atrás no ollo, evitando forza-lo mesmo e a mala visión en caso de non poder forzalo de xeito suficiente. Para isto necesitan facer diverxe-los raios de luz que inciden nelas.

13 13.- Queremos facer pasar un raio de luz a través dun vidro, de xeito que non se desvíe. Terá que ser: a. Unha lente plana paralela, en calquera posición. b. Non se pode facer. c. Calquera lente, atravesándoa polo eixe óptico. SOL.: c Toda lente, ó ser atravesada por un raio no seu eixe óptico, non o desvía, pois implica que as superficies que ten que atravesar son perpendiculares ó raio incidente Unha lámpada está acendida nun flexo que ten unha pantalla reflectora en forma de pirámide de cono truncada. A razón é: a. Iluminar por igual en toda a superficie. b. Concentrar a maior potencia luminosa posible sobre a superficie iluminada. c. Evitar deslumbramentos. A pantalla reflicte parte da luz que, doutro xeito, sería inservible para o uso que se lle quere dar, concentrándoa sobre a superficie iluminada e aumentando a intensidade luminosa nela. O apartado c tamén é certo, se ben parte do malestar visual deste tipo ten outras causas, como o reflexo no papel, por exemplo Dous raios de luz inicialmente paralelos, crúzanse despois de atravesar unha lente. Eso pode darse en caso de que teñamos: SOL: b a. Unha lente de vidro cóncava en aire. b. Un oco cóncavo cheo de aire no interior dunha masa de vidro. c. Necesariamente con outra disposición diferente das anteriores. Cando os índices de refracción da lente e o medio "externo" de transmisión intercambian os seus valores, o efecto que produce tamén se invirte. Estamos afeitos a ter lentes de vidro actuando no aire, e en tal caso actuarán como lentes diverxentes. Pero, se o índice de refracción interior é menor que o exterior, entón o efecto é o contrario: son lentes converxentes O ángulo formado polo raio incidente e o reflectido nun espello é α. Se o espello rota un ángulo β nun eixe perpendicular ó formado polos dous raios anteriores, o novo ángulo que formarán entre eles é:

14 a) α+β b) α+2β c) α β Cando o espello rota, varía o ángulo de incidencia no mesmo valor que o ángulo de xiro. Como na reflexión se cumpre que o ángulo de incidencia e o de reflexión son iguais, a separación entre ambos varía ese mesmo valor dúas veces. A ter en conta que se o ángulo é en sentido contrario, poden "cambiarse de lado" os raios incidente e reflectido, así como se o ángulo de incidencia chegara a 90º, entón xa non incidiría e polo tanto non se reflectiría.

15

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10¹⁴ Hz incide cun ángulo de incidencia de 30 sobre unha lámina de vidro de caras plano-paralelas de espesor 10

Διαβάστε περισσότερα

Exercicios de Física 04. Óptica

Exercicios de Física 04. Óptica Exercicios de Física 04. Óptica Problemas 1. Unha lente converxente ten unha distancia focal de 50 cm. Calcula a posición do obxecto para que a imaxe sexa: a) real e tres veces maior que o obxecto, b)

Διαβάστε περισσότερα

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.

Διαβάστε περισσότερα

FISICA 2º BAC 27/01/2007

FISICA 2º BAC 27/01/2007 POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo

Διαβάστε περισσότερα

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O? EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de

Διαβάστε περισσότερα

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior. ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA íica P.A.U. ÓPTICA ÓPTICA INTRODUCIÓN MÉTODO. En xeral: Debúxae un equema co raio. Compárae o reultado do cálculo co equema. 2. No problema de lente: Trázae un raio paralelo ao eixe óptico que ao chegar

Διαβάστε περισσότερα

PAU XUÑO 2011 FÍSICA

PAU XUÑO 2011 FÍSICA PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Xuño 2002

PAAU (LOXSE) Xuño 2002 PAAU (LOXSE) Xuño 00 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).

Διαβάστε περισσότερα

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ). 22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

A LUZ. ÓPTICA XEOMÉTRICA

A LUZ. ÓPTICA XEOMÉTRICA A LUZ. ÓPTICA XEOMÉTRICA PROBLEMAS. Un espello esférico ten 0,80 m de radio. a) Se o espello é cóncavo, calcular a qué distancia hai que colocar un obxecto para obter unha imaxe real dúas veces maior que

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735

Διαβάστε περισσότερα

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

24/10/06 MOVEMENTO HARMÓNICO SIMPLE

24/10/06 MOVEMENTO HARMÓNICO SIMPLE NOME: CALIFICACIÓN PROBLEMAS (6 puntos) 24/10/06 MOVEMENTO HARMÓNICO SIMPLE 1. Dun resorte elástico de constante k= 500 Nm -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

1.- Evolución das ideas acerca da natureza da luz! Óptica xeométrica! Principio de Fermat. Camiño óptico! 3

1.- Evolución das ideas acerca da natureza da luz! Óptica xeométrica! Principio de Fermat. Camiño óptico! 3 1.- Evolución das ideas acerca da natureza da luz! 2 2.- Óptica xeométrica! 2 2.1.- Principio de Fermat. Camiño óptico! 3 2.2.- Reflexión e refracción. Leis de Snell! 3 2.3.- Laminas plano-paralelas! 4

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2004

PAAU (LOXSE) Setembro 2004 PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou

Διαβάστε περισσότερα

EXERCICIOS DE REFORZO: RECTAS E PLANOS

EXERCICIOS DE REFORZO: RECTAS E PLANOS EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

PAU Xuño 2011 FÍSICA OPCIÓN A

PAU Xuño 2011 FÍSICA OPCIÓN A PAU Xuño 20 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 204 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EJERCICIOS DE VIBRACIONES Y ONDAS

EJERCICIOS DE VIBRACIONES Y ONDAS EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)

Διαβάστε περισσότερα

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

PAAU (LOXSE) Xuño 2006

PAAU (LOXSE) Xuño 2006 PAAU (LOXSE) Xuño 006 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).

Διαβάστε περισσότερα

PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso

PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso 2017-2018 Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades

Διαβάστε περισσότερα

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCIÓN MÉTODO 1. En xeral: Debúxanse as forzas que actúan sobre o sistema. Calcúlase a resultante polo principio de superposición. Aplícase a 2ª lei

Διαβάστε περισσότερα

Procedementos operatorios de unións non soldadas

Procedementos operatorios de unións non soldadas Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2006

PAAU (LOXSE) Setembro 2006 PAAU (LOXSE) Setembro 2006 Código: 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (,5 cada apartado). Cuestións 4 puntos ( cada cuestión, teórica

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Proba de Avaliación do Bacharelato para o Acceso á Universidade Código: 23 XUÑO 2018 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado).

Διαβάστε περισσότερα

Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 SETEMBRO 2013 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física

Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física Probas de acceso a ciclos formativos de grao superior Proba de Física Código CSPEB03 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións.

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 10 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 17-18 http://ciug.gal/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2017. Un astronauta está no interior

Διαβάστε περισσότερα

Exercicios de Física 02a. Campo Eléctrico

Exercicios de Física 02a. Campo Eléctrico Exercicios de Física 02a. Campo Eléctrico Problemas 1. Dúas cargas eléctricas de 3 mc están situadas en A(4,0) e B( 4,0) (en metros). Caalcula: a) o campo eléctrico en C(0,5) e en D(0,0) b) o potencial

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B ABAU Código: 25 MODELO DE EXAME FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

PAU SETEMBRO 2014 FÍSICA

PAU SETEMBRO 2014 FÍSICA PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS INTRODUCIÓN MÉTODO 1. En xeral: a) Debúxanse as forzas que actúan sobre o sistema. b) Calcúlase cada forza. c) Calcúlase a resultante polo principio

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO PROBLEMAS CAMPO ELECTROSTÁTICO 1. Dúas cargas eléctricas de 3 mc están situadas en A(4, 0) e B(-4, 0) (en metros). Calcula: a) O campo eléctrico en C(0,

Διαβάστε περισσότερα

ln x, d) y = (3x 5 5x 2 + 7) 8 x

ln x, d) y = (3x 5 5x 2 + 7) 8 x EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)

Διαβάστε περισσότερα

1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular.

1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular. EXAMEN 1ª AVALIACION FISICA 2º BACHARELATO PROBLEMAS 1. Unha pelota de 2 kg de masa esbara polo tellado que forma un ángulo de 30º coa horizontal e, cando chega ó extremo, queda en libertade cunha velocidade

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

Física e Química 4º ESO

Física e Química 4º ESO Física e Química 4º ESO DEPARTAMENTO DE FÍSICA E QUÍMICA Física: Temas 1 ao 6. 01/03/07 Nome: Cuestións 1. Un móbil ten unha aceleración de -2 m/s 2. Explica o que significa isto. 2. No medio dunha tormenta

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio.

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio. Tema 6 Ondas 6-1 Movemento ondulatorio. Clases de ondas 6- Ondas harmónicas. Ecuación de ondas unidimensional 6-3 Enerxía e intensidade das ondas harmónicas 6-4 Principio de Huygens: reflexión e refracción

Διαβάστε περισσότερα

PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B

PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 SETEMBRO 2015 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

Física cuántica. Relatividade especial

Física cuántica. Relatividade especial Tema 8 Física cuántica. Relatividade especial Evolución das ideas acerca da natureza da luz Experimento de Young (da dobre fenda Dualidade onda-corpúsculo Principio de indeterminación de Heisemberg Efecto

Διαβάστε περισσότερα

Tema 3. Espazos métricos. Topoloxía Xeral,

Tema 3. Espazos métricos. Topoloxía Xeral, Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores

Διαβάστε περισσότερα

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo

Διαβάστε περισσότερα

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo. XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

MECÁNICA CUÁNTICA 2. ORIXES DA TEORÍA CUÁNTICA: RADIACIÓN DO CORPO NEGRO. HIPÓTESE DE PLANCK

MECÁNICA CUÁNTICA 2. ORIXES DA TEORÍA CUÁNTICA: RADIACIÓN DO CORPO NEGRO. HIPÓTESE DE PLANCK MECÁNICA CUÁNTICA 1. INTRODUCIÓN No tema anterior vimos como a busca dun sistema de referencia privilexiado, en repouso absoluto, chocou de cheo cos postulados da Física Clásica e como os intentos de solucionalo

Διαβάστε περισσότερα

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade

Διαβάστε περισσότερα

A circunferencia e o círculo

A circunferencia e o círculo 10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.

Διαβάστε περισσότερα

Exercicios de Física 02b. Magnetismo

Exercicios de Física 02b. Magnetismo Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado

Διαβάστε περισσότερα

Reflexión e refracción. Coeficientes de Fresnel

Reflexión e refracción. Coeficientes de Fresnel Tema 5 Reflexión e refracción Coeficientes de Fresnel 51 Introdución Cando a luz incide sobre a superficie de separación de dous medios transparentes de índice de refracción diferente, unha parte entra

Διαβάστε περισσότερα

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS 1. A luz do Sol tarda 5 10² s en chegar á Terra e 2,6 10³ s en chegar a Xúpiter. a) O período de Xúpiter orbitando arredor do Sol. b) A velocidade orbital

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA

PAU XUÑO 2016 FÍSICA PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

ELECTROMAGNETISMO Problemas PAAU

ELECTROMAGNETISMO Problemas PAAU ELECTROMAGNETISMO Problemas PAAU XUÑO-96 PROBLEMA 2. op B Dadas as cargas puntuais q 1 = 80 µc, q 2 = -80 µc y q 3 = 40 µc situadas nos puntos A (-2,0), B(2,0) y C(0,2) respectivamente (coordenadas en

Διαβάστε περισσότερα

DINAMICA DE TRASLACION

DINAMICA DE TRASLACION DINAMICA DE TRASLACION 1.-CINEMATICA ELEMENTOS DO MOVEMENTO: Móvil, Sistema de Referencia e Traxectoria MAGNITUDES CINEMATICAS: - Vector de Posición: r= xi + yj + zk - Vector desplazamento: r= xi + yj

Διαβάστε περισσότερα

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración.

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración. FÍSICA MODERNA FÍSICA NUCLEAR. PROBLEMAS 1. Un detector de radioactividade mide unha velocidade de desintegración de 15 núcleos min -1. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a)

Διαβάστε περισσότερα

Materiais e instrumentos que se poden empregar durante a proba

Materiais e instrumentos que se poden empregar durante a proba 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

RADIACTIVIDADE. PROBLEMAS

RADIACTIVIDADE. PROBLEMAS RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de

Διαβάστε περισσότερα

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación: VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó

Διαβάστε περισσότερα

EXERCICIOS DE ÁLXEBRA. PAU GALICIA

EXERCICIOS DE ÁLXEBRA. PAU GALICIA Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN

PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN "O que sabemos é unha pinga de auga, o que ignoramos é o océano." Isaac Newton 1. Un globo aerostático está cheo de gas Helio cun volume de gas de 5000 m 3. O peso

Διαβάστε περισσότερα

Resorte: estudio estático e dinámico.

Resorte: estudio estático e dinámico. ESTUDIO DO RESORTE (MÉTODOS ESTÁTICO E DINÁMICO ) 1 Resorte: estudio estático e dinámico. 1. INTRODUCCIÓN TEÓRICA. (No libro).. OBXECTIVOS. (No libro). 3. MATERIAL. (No libro). 4. PROCEDEMENTO. A. MÉTODO

Διαβάστε περισσότερα

LUGARES XEOMÉTRICOS. CÓNICAS

LUGARES XEOMÉTRICOS. CÓNICAS LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo

Διαβάστε περισσότερα

PAU XUÑO 2015 FÍSICA

PAU XUÑO 2015 FÍSICA PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais PROGRAMACIÓN DE AULA MAPA DE CONTIDOS propagan enerxía, pero non materia clasifícanse ONDAS exemplos PROGRAMACIÓN DE AULA E magnitudes características segundo o medio de propagación segundo a dirección

Διαβάστε περισσότερα

Exercicios de Física 01. Gravitación

Exercicios de Física 01. Gravitación Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na

Διαβάστε περισσότερα

Problemas xeométricos

Problemas xeométricos Problemas xeométricos Contidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores e segmentos 2. Corpos xeométricos Prismas Pirámides Troncos de pirámides

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

SATÉLITES TERRESTRES E AS SÚAS ÓRBITAS

SATÉLITES TERRESTRES E AS SÚAS ÓRBITAS INTRODUCIÓN O carácter da Física como ciencia experimental fai que as prácticas de laboratorio sexan un complemento imprescindible no ensino desta disciplina. As actividades prácticas poñen aos estudantes

Διαβάστε περισσότερα

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016 Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:

Διαβάστε περισσότερα

1. Formato da proba [CS.PE.B03]

1. Formato da proba [CS.PE.B03] 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: tres cuestións. Problema 2: dúas cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

VII. RECTAS E PLANOS NO ESPAZO

VII. RECTAS E PLANOS NO ESPAZO VII. RETS E PLNOS NO ESPZO.- Ecuacións da recta Unha recta r no espao queda determinada por un punto, punto base, e un vector v non nulo que se chama vector director ou direccional da recta; r, v é a determinación

Διαβάστε περισσότερα

PAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B

PAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU Código: 5 SETEMBRO 01 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exercicios de Física 03a. Vibracións

Exercicios de Física 03a. Vibracións Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal

Διαβάστε περισσότερα