Zadaci iz Osnova matematike

Σχετικά έγγραφα
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

ELEKTROTEHNIČKI ODJEL

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

Teorijske osnove informatike 1

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

Operacije s matricama

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

Skupovi, relacije, funkcije

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

Matematička analiza 1 dodatni zadaci

Funkcije. Predstavljanje funkcija

7 Algebarske jednadžbe

3.1 Granična vrednost funkcije u tački

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

18. listopada listopada / 13

ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

1 ISKAZNA I PREDIKATSKA LOGIKA Zadaci Rešenja SKUPOVI Zadaci RELACIJE Zadaci Rešenja...

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

Uvod u teoriju brojeva

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

4 Funkcije. 4.1 Pojam funkcije

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Binarne relacije. Definicija. Uopštena binarna relacija je uredjena trojka (A, B, ρ) gde je ρ A B; (A, B) je tip ove binarne relacije.

U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije.

KURS IZ MATEMATIKE I

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

Zavrxni ispit iz Matematiqke analize 1

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

radni nerecenzirani materijal za predavanja

Osnovne teoreme diferencijalnog računa

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

5. Karakteristične funkcije

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

1 Svojstvo kompaktnosti

APROKSIMACIJA FUNKCIJA

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

TRIGONOMETRIJSKE FUNKCIJE I I.1.

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

3 Funkcije. 3.1 Pojam funkcije

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

ELEMENTARNA MATEMATIKA 1

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Elementi spektralne teorije matrica

Dimenzija vektorskog prostora

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

1 Uvodni pojmovi kombinatorike, I deo

Zadaci iz trigonometrije za seminar

1 Pojam funkcije. f(x)

Jednodimenzionalne slučajne promenljive

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

SKRIPTE IZ MATEMATIKE 1 ZA STUDENTE OSNOVNIH STRUKOVNIH STUDIJA SOFTVERSKIH I INFORMACIONIH TEHNOLOGIJA. Maja i Ljubo Nedović

SISTEMI NELINEARNIH JEDNAČINA

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Riješeni zadaci: Limes funkcije. Neprekidnost

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

Relacije poretka ure denja

Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f}

Riješeni zadaci: Nizovi realnih brojeva

FUNKCIJE - 2. deo. Logika i teorija skupova. 1 Logika FUNKCIJE - 2. deo

Četrnaesto predavanje iz Teorije skupova

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

Ispitivanje toka i skiciranje grafika funkcija

Dvanaesti praktikum iz Analize 1

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

Zadaci iz Topologije A

Teorija skupova. Matko Males Split. lipanj 2003.

Diskretna matematika. Prof. dr Olivera Nikolić

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

Dijagonalizacija operatora

Zadaća iz kolegija Metrički prostori 2013./2014.

numeričkih deskriptivnih mera.

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

Funkcije dviju varjabli (zadaci za vježbu)

1.1 Iskazni (propozicioni) račun

Aksioma zamene. Aksioma dobre zasnovanosti. Aksioma dobre zasnovanosti Svaki neprazan skup A sadrži skup a takav da je A a = 0.

DISKRETNA MATEMATIKA

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

MATEMATIKA 1 skripta za studente fizike

1.4 Tangenta i normala

Matematika (PITUP) Prof.dr.sc. Blaženka Divjak. Matematika (PITUP) FOI, Varaždin

TRIGONOMETRIJA TROKUTA

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Transcript:

Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F tautologija. 3. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula (q p) p F tautologija. 4. Naći iskaz F čija je istinitosna vrijednost predstavljena tablicom 5. Ispitati tačnost formula p q r F (i) ( x N)( y N)( z N) x + y = z; (ii) ( x N)( z N)( y N) x + y = z; (iii) ( z N)( x N)( y N) x + y = z; (iv) ( x Z)( y Z)( z Z) x + y = z. 6. Dokazati da za sve skupove A, B, C X vrijedi: (i) A\(A\B) = A B (ii) (A B)\C = (A\C) (B\C) (iii) (A\B)\C = (A\C)\(B\C) (iv) A B = A B (A B) (v) A B = A B (A B) (vi) P(A B) = P(A) P(B), gdje je P oznaka za partitivni skup. (vii) (A\B) C = (A C)\(B C) (viii) A (B\C) = (A B)\(A C) (ix) f(a B) = f(a) f(b) (x) f 1 (A) f 1 (B) = f 1 (A B) (x) f(a) B = f(a f 1 (B)) 1

7. (i) Neka su A, B, C podskupovi skupa X. Dokazati A B C ako i samo ako A B c C. (ii) Neka je {A i : i I} kolekcija skupova indeksirana skupom I. Dokazati da za proizvoljan skup B vrijedi B ( i I A i ) = i I(B A i ). 8. (i) Neka su A, B, C podskupovi skupa X. Dokazati C A B ako i samo ako B c C A. (ii) Neka je {A i : i I} kolekcija skupova indeksirana skupom I. Dokazati da za proizvoljan skup B vrijedi B ( i I A i ) = i I(B A i ). 9. Pokazati da za skupove A, B vrijedi (i) A B P (A) P (B); (ii) P (A) P (B) P (A B). Dati primjer skupova A, B tako da u (ii) vrijedi stroga inkluzija. 10. Za kakve skupove A, B, C sljedeći sistemi imaju rješenje (i) A X = B X, A X = C X, (ii) A\X = X\B, X\A = C\X? Šta je rješenje sistema? 11. Odrediti relacije R 1, R R, R R 1, ako je (i) R = {(x, y) : x, y N, x y} N N (ii) R = {(x, y) : x, y R, x + y 0} R R (iii) R = {(x, y) : x, y R, x 3y} R R 1. Ako su R, R 1, R A B relacije iz A u B, dokazati da je onda: (i) (R 1 R ) 1 = R 1 1 R 1 (ii) (R c ) 1 = (R 1 ) c. 13. Dokazati da je relacija biti djelitelj relacija poretka na N. 14. Dokazati da ako je R relacija poretka da je onda i R 1 relacija poretka. 15. Dokazati da ako su R 1 i R simetrične relacije da su onda i R 1 R, R 1 R, R 1 1 simetrične.

16. Neka su R 1 i R simetrične relacije. Dokazati da je R 1 R simetrična ako i samo ako je R 1 R = R R 1. 17. Navesti primjer relacije koja je: (i) refleksivna, simetrična i netranzitivna (ii) refleksivna, antisimetrična i netranzitivna. 18. Koja od sljedećih relacija je relacija ekvivalencije na S, (i) S = N\{0, 1}, x y nzd(x, y) > 1, gdje je nzd najveći zajednički djelilac; (ii) S = R, x y ( n Z) x = n y? 19. Neka su R 1 i R relacije ekvivalencije na X. Dokazati: (i) R 1 R 1 = X X R 1 = X X; (ii) R 1 R = X X R R 1 = X X. 0. Dokazati da je ρ A relacija ekvivalencije ako vrijedi A ρ, ρ = ρ 1, ρ ρ ρ. 1. Dokazati da je ρ A relacija poretka ako vrijedi A ρ, ρ ρ 1 A, ρ ρ ρ.. Dokazati da svaka particija nepraznog skupa X definiše jednu relaciju ekvivalencije na tom skupu čije su klase ekvivalencije skupovi iz posmatrane particije. 3. Ispitati da li je relacija ρ R definisana sa xρy def x n y n 0 relacija poretka za (i) n = 3; (ii) n = 4. 4. Neka je A relacija poretka na skupu A i B relacija poretka na skupu B. Na skupu A B definisana je relacija AB na sljedeći način (a 1, b 1 ) AB (a, b ) def a 1 A a b 1 B b. (i) Pokazati da je AB relacija poretka na A B. (ii) Ako su A i B linearna uredjenja, da li je tada i AB linearno uredjenje? 5. Dokazati da na nepraznom skupu A jedina relacija koja je istovremeno relacija ekvivalencije i relacija poretka jeste dijagonalna relacija A. 3

6. Ako je ρ relacija poretka na skupu A pokazati da je i ρ 1 relacija poretka na skupu A. Na osnovu toga dokazati da na svakom konačnom nepraznom skupu ima neparan broj relacija poretka. 7. Neka je ρ refleksivna i tranzitivna relacija na skupu A i relacija na skupu A definisana sa x y def xρy yρx. Pokazati da je relacija ekvivalencije i da je (A/, ) uredjen skup ako je relacija definisana sa def a b aρb. 8. Uz pomoć matematičke indukcije dokazati: n 1 (i) (3k )(3k + 1) = n 3n + 1 (ii) (iii) (iv) (v) (vi) n ( 1) k k n n(n + 1) = ( 1) n a k n a k, gdje su a 1,..., a n R proizvoljni; n cos x k = sin x n sin x, za proizvoljno x (0, π); n n ( 1 + x k) = 1 xn+1, za sve x 1; 1 x k=0 n 1 k < n, za n ; ( ) n, n+1 (vii) n! < za sve n > 1. 9. Neka je niz (a n ) rekurzivno dat sa a 1 = 1, a = 1, a n = 1 Dokazati da je 1 a n, za sve n N. 30. Neka je niz (a n ) rekurzivno dat sa ( a n 1 + ) a n (n 3). a 1 = 1, a = 1, a n = a n 1 + a n (n 3). Dokazati da je a n = 3 n 1 + ( 1) n, za sve n N. 31. Neka je niz (a n ) rekurzivno dat sa a n = a n 1 + 3a n (n 3). Dokazati: (i) Ako su a 1, a N neparni, onda su svi (a n ) neparni; (ii) a 1 = a = 1 a n = 1 ( 3 n 1 ( 1) n) (n N ). 4

3. Koje od sljedecih funkcija f : N N N je surjektivna, ako je (i) f(a, b) = a + b (ii) f(a, b) = ab (iii) f(a, b) = ab(b+1) (iv) f(a, b) = ab(a+b) (v) f(a, b) = 3 a 1 (3b 1) 33. Koja od sljedećih funkcija f : A R je injektivna, ako je (i) A = R, f(x) = x 1+x (ii) A = ( 1, 1), f(x) = (iii) A = R, f(x) = x 1+x (iv) A = [0, ), f(x) = (v) A = R, f(x) = x3 1+x. x 1+x x 1+x 34. Ispitati da li je funkcija f : R R data sa f(x) = injektivna. Da li je surjektivna? { x + 1, za x < 0 1 x, za x 0 35. Neka je funkcija f : R R data sa f(x, y) = (4 + x y, y x 5). Pokazati da je f bijekcija i naći njenu inverznu funkciju. 36. Neka su f : A B i g : B C preslikavanja. Pokazati (i) Ako je g f injektivno preslikavanje onda je f injektivno preslikavanje; (ii) Ako je g f surjektivno preslikavanje onda je g surjektivno preslikavanje; (iii) Ako je g f bijektivno preslikavanje onda je f injektivno preslikavanje, a g surjektivno preslikavanje. 37. Pokazati da se svako preslikavanje može razložiti kao kompozicija dva preslikavanja od kojih je jedno injektivno a drugo surjektivno. 38. Neka je f : X X preslikavanje koje ima osobinu da postoji prirodan broj n tako da je f n = id X (pri čemu je f n = f n 1 f i id X je identičko preslikavanje na skupu X). Pokazati da je f bijekcija. 39. Neka je f : X Y prelikavanje i A X, B Y. Dokazati (i) A f 1 f(a); (ii) ff 1 (B) B; (iii) A = f 1 f(a) ako i samo ako je f 1-1 ; (iv) ff 1 (B) = B ako i samo ako je f na. 5

40. Preslikavanje f : A B je 1 1 ako i samo ako za sve neprazne skupove S i sva preslikavanja g : S A i h : S A vrijedi f g = f h g = h. Dokazati. 41. Preslikavanje f : A B je na ako i samo ako za sve neprazne skupove S i sva preslikavanja g : B S i h : B S vrijedi g f = h f g = h. Dokazati. 4. Neka je X skup. Pokazati da je funkcija f : P (X) {0, 1} X data sa f(a) = χ A (gdje je χ A karakteristična funkcija skupa A) bijekcija. 43. Neka su A, B, C X skupovi. Pomoću funkcija χ A, χ B i χ C izraziti funkcije χ A B, χ A B, χ A (B C), χ X\A i χ A B. 44. Dokazati da za proizvoljne skupove A 1,..., A n postoje disjunktni skupovi A 1,..., A n takvi da je A i A i za i = 1,..., n. 45. Neka su A, B, A 1, B 1 skupovi. Dokazati: (i) A B B A (ii) A A 1 B B 1 A B A 1 B 1 (iii) A A 1 B B 1 A B A B1 1. 46. Neka su A, B, C skupovi. Dokazati (i) A C B C (A B) C ; (ii) (A B ) C A B C. 47. Dokazati da je za svaki skup X ispunjeno P (X) {0, 1} X. 48. Dokazati da ako je S N beskonačan, onda S nije ograničen odozgo. 49. Dokazati da je skup A beskonačan ako i samo ako postoji preslikavanje f : A A koje je injektivno a nije surjektivno. 50. Ako je A B tada postoji surjektivno preslikavanje f : B A. Dokazati. 51. Dokazati da je [a, b] Q Q, gdje je a, b R, a < b. 5. Dokazati da skup (0, 1) (0, 1) nije prebrojiv. 53. Dokazati da skupovi realnih i iracionalnih brojeva ekvipotentni. 54. Dokazati da konačnih podskupova od N ima prebrojivo mnogo. 55. Dokazati da je skup svih intervala (otvorenih, zatvorenih, poluotvorenih, poluzatvorenih) u R sa racionalnim granicama prebrojiv. 56. Pokazati da je bilo koja familija disjunktnih otvorenih intervala u R najviše prebrojiva. 57. Neka je A = {A N : A}. Pokazati da je A = c. 6

58. Neka je N relacija definisana na sljedeći način: Za m, n N (i) Pokazati da je relacija poretka. m n def m n. (ii) Ako je A N konačan skup naći (ako postoje) sup A, inf A, max A i min A. (iii) Ako je P N N skup prostih brojeva naći (ako postoje) sup A, inf A, max A i min A. 59. Neka je O = {(, a) : a R} P (R). Pokazati da za svaku familiju A O vrijedi A O. 60. Ako je = A R i B R i ako je za sve a A i sve b B ispunjeno a b, pokazati da je sup A inf B. 61. Neka su A, B R ograničeni skupovi i neka je Pokazati (i) sup(a + B) = sup A + sup B; (ii) inf(a + B) = inf A + inf B. A + B = {a + b : a A, b B}. 6. Neka je A R odozdo ograničen skup i neka je A = { a : a A}. Pokazati da je sup( A) = inf A. 63. Odrediti sup S, inf S, min S, max S, ako je skup S dat sa: { } { (i) x 1+ x : x R ; (ii) x + 1 x : 1 }; < x { { } 3n 1 (iii) 5n+ }; : n N m (iv) m+n : m, n N { } } 1 (v) m 1 n : m, n N (vi) {1 + 3 ( 1)n n : n N. 64. Dokazati da za sve n N vrijedi sljedeće: (i) k n je prirodan ili iracionalan broj, za svako k N; (ii) n + n + 1 je iracionalan broj; (iii) n + n je iracionalan broj. 65. Dokazati da za sve a, b R, a, b 0 i n N važi a < b n a < n b. 66. Dokazati k b k a < k b a, za sve 0 < a < b i k N. 67. Dokazati da svaki neprazan podskup skupa {1 + n : n N} ima najmanji element. 7

68. Neka je r Q. Dokazati da je funkcija f : (0, ) R, f(x) = x r strogo rastuća za r > 0, a strogo opadajuća za r < 0. 69. Ako je A = {x R, x > 0 : x > }, naći inf A. 70. Ako je A = {x Q : x 3 < 4}, naći sup A. 8