Arhitektura računara

Σχετικά έγγραφα
Arhitektura računara. Bulova algebra. Elementi logike. Logičke funkcije. Potpuni sistemi logičkih funkcija. Uvod u organizaciju računara 1.

Arhitektura računara. vežbe - čas 1 i 2: Minimizacija logičkih funkcija

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

3.1 Granična vrednost funkcije u tački

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

5. Karakteristične funkcije

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

IZVODI ZADACI (I deo)

Elementi spektralne teorije matrica

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

Teorijske osnove informatike 1

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

Operacije s matricama

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

ELEKTROTEHNIČKI ODJEL

Ispitivanje toka i skiciranje grafika funkcija

18. listopada listopada / 13

APROKSIMACIJA FUNKCIJA

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

numeričkih deskriptivnih mera.

Zavrxni ispit iz Matematiqke analize 1

SISTEMI NELINEARNIH JEDNAČINA

III VEŽBA: FURIJEOVI REDOVI

Diskretna matematika. Prof. dr Olivera Nikolić

Matematička logika. novembar 2012

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

41. Jednačine koje se svode na kvadratne

radni nerecenzirani materijal za predavanja

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

RIJEŠENI ZADACI I TEORIJA IZ

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

7 Algebarske jednadžbe

Osnovne teoreme diferencijalnog računa

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

Računarska grafika. Rasterizacija linije

Zadaci iz Osnova matematike

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

INTELIGENTNO UPRAVLJANJE

Matematička analiza 1 dodatni zadaci

2. Tautologije; Bulove funkcije (SDNF, SKNF)

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

IZVODI ZADACI (I deo)

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici

Otpornost R u kolu naizmjenične struje

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

8 Funkcije više promenljivih

Dijagonalizacija operatora

Numerička matematika 2. kolokvij (1. srpnja 2009.)

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

5 Ispitivanje funkcija

TRIGONOMETRIJSKE FUNKCIJE I I.1.

Funkcije dviju varjabli (zadaci za vježbu)

Riješeni zadaci: Limes funkcije. Neprekidnost

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Sintaksa i semantika u logici

( , 2. kolokvij)

Diskretna Matematika

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

Računarska grafika. Rasterizacija linije

4 Izvodi i diferencijali

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

Osnovno svojstvo iskaza, ma kako složen bio, jeste da je on ili tačan, ili netačan.

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Matematika 1 - vježbe. 11. prosinca 2015.

Algoritmi zadaci za kontrolni

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Obrada signala

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

Predikatska logika - III deo. Jelena Ignjatović

Funkcije. Predstavljanje funkcija

Sistemi veštačke inteligencije primer 1

Zadaci iz trigonometrije za seminar

Elementi elektronike septembar 2014 REŠENJA. Za vrednosti ulaznog napona

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

Transcript:

Arhitektura računara vežbe - čas 1 i 2: Minimizacija logičkih funkcija Mladen Nikolić URL: http://www.matf.bg.ac.yu/~nikolic e-mail: nikolic@matf.bg.ac.yu 1

Bulova algebra Klod Šenon je 1938. uočio da se Bulova algebra može koristiti u rešavanju problema digitalne elektronike. Bulova algebra se pokazala posebno korisna u sledećim zadacima: Opis elektronskog kola kao logičke funkcije ulaza kola. Nalaženje najboljeg načina realizacije te funkcije. Uvod u organizaciju računara 2

Elementi logike Logičke konstante: 0 i 1 Logičke promenljive: A, B, C Logičke (iskazne) formule su: Logičke konstante i promenljive. Ako su P i Q logičke formule, onda su i ( P), (PΛQ), (PVQ), (P Q) i (P Q) logičke formule. Ništa drugo nije logička formula. Uvod u organizaciju računara 3

Logičke funkcije Funkcije oblika ƒ:{0,1} n {0,1} nazivamo logičkim funkcijama n promenljivih. Postoji 2 2n logičkih funkcija n promenljivih. Za svaku logičku funkciju postoji bar jedna logička formula koja joj odgovara i obrnuto. Uvod u organizaciju računara 4

Potpuni sistemi logičkih funkcija Za skup logičkih funkcija kažemo da je potpun ako se sve logičke funkcije mogu predstaviti pomoću funkcija ovog skupa. Potpun sistem je minimalan ako ni jedan njgov pravi podskup nije potpun. {, Λ} je minimalan potpun sistem funkcija. Npr. AVB= ( A Λ B) Uvod u organizaciju računara 5

Potpuni sistemi logičkih funkcija Sistemi { } i { } su potpuni i minimalni. Funkcije (Ni, Šeferova funkcija) i (Nili, Lukašievičeva funkcija) se definišu na sledeći način: A B 0 0 0 1 1 0 1 1 A B A B 1 1 1 0 1 0 0 0 Uvod u organizaciju računara 6

Potpuni sistemi logičkih funkcija Potpunost prethodnih sistema se vidi iz sledećih relacija: A=A A AΛB=(A B) (A B) A=A A AΛB=(A A) (B B) Uvod u organizaciju računara 7

Normalne forme Logičke konstante, logičke promenljive i njihove negacije nazivaćemo literalima. Logička formula je u konjunktivnoj normalnoj formi ako je oblika: A 1 Λ A 2 Λ Λ A n gde je svaka od formula A i disjunkcija literala. Uvod u organizaciju računara 8

Normalne forme Logička formula je u disjunktivnoj normalnoj formi ako je oblika: A 1 V A 2 V V A n gde je svaka od formula A i konjunkcija literala. Za svaku logičku formulu postoje ekvivalentne formule u DNF i KNF. Uvod u organizaciju računara 9

Algoritam za DNF Ulaz: Logička formula A Izlaz: DNF formule A (1) Eliminisati veznik A B koristeći ekvivalenciju A B (A B) Λ (B A) (2) Eliminisati veznik A B koristeći ekvivalenciju A B A V B (3) Dok je moguće primenjivati De Morganove zakone: (A Λ B) A V B i (A V B) A Λ B (4) Eliminisati višestruke negacije koristeći zakon A A (5) Dok je moguće primenjivati zakone distributivnosti Λ u odnosu na V A Λ (B V C) (A Λ B) V (A Λ C) i (B V C) Λ A (B Λ A) V (C Λ A) Uvod u organizaciju računara 10

Primer Naći DNF formule ((A B) C) (1) ((A B Λ B A) C) (2) ( (( AVB) Λ ( BVA)) V C) (3) ( ( AVB) V ( BVA) V C) (3) (( A Λ B) V ( B Λ A) V C) (3) ( A Λ B) Λ (( B Λ A) V C) (3) ( A V B) Λ ( B Λ A) Λ C (3) ( A V B) Λ ( B V A) Λ C (4) ( A V B) Λ ( B V A) Λ C (5) ( A V B) Λ (( B Λ C) V (A Λ C)) (5) (( A V B) Λ ( B Λ C)) V (( A V B) Λ (A Λ C)) (5) ( A Λ B Λ C) V (B Λ B Λ C) V ( A Λ A Λ C) V (B Λ A Λ C) Uvod u organizaciju računara 11

Primer Naći DNF sledećih formula: ((C A) B) (C (A B)) (A B) C ( (A B)) C (A (B C))Λ((A B) C) Uvod u organizaciju računara 12

Pojednostavljivanje Formule se mogu pojednostaviti koristeći ekvivalencije: A Λ A 0 A V A 1 A Λ 0 0 A V 0 A A Λ 1 A A V 1 1 A Λ A A A V A A Uvod u organizaciju računara 13

Primer Uprostiti: ( A Λ B Λ C) V (B Λ B Λ C) V ( A Λ A Λ C) V (B Λ A Λ C) ( A Λ B Λ C) V (0 Λ C) V (0 Λ C) V (B Λ A Λ C) ( A Λ B Λ C) V 0 V 0 V (B Λ A Λ C) ( A Λ B Λ C) V 0 V (B Λ A Λ C) ( A Λ B Λ C) V (B Λ A Λ C) Uvod u organizaciju računara 14

Formiranje DNF prema tablici Ako je data tablica koja predstavlja neku logičku funkciju, lako se dobija DNF odgovarajuće formule. DNF se dobija tako što se svakoj vrsti tablice za koju je vrednost funkcije 1 pridruži jedna konjunkcija literala. Literali u konjunkcijama se odredjuju na sledeći način: Ako u odgovarajućoj vrsti promenljiva X ima vrednost 1, u konjunkciji se javlja literal X U suprotnom, ako promenljiva X u toj vrsti ima vrednost 0, u konjunkciji se javlja literal X Disjunkcija svih takvih konjunkcija je tražena DNF. Uvod u organizaciju računara 15

Uvod u organizaciju računara 16 Primer Odgovarajuća DNF je: ( A Λ B Λ C) V ( A Λ B Λ C) V (A Λ B Λ C) A B C F 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0

Logički elementi Logički elementi su elektronski objekti koji implementiraju neke od logičkih funkcija. Argumenti funkcija su ulazi, a vrednosti funkcija su izlazi logičkih elemenata. Logički elementi obično implementiraju potpune sisteme logičkih funkcija. Uvod u organizaciju računara 17

Logički elementi Svaka logička funkcija se u elektronskom obliku može predstaviti mrežom povezanih logičkih elemenata. Ovi elementi se mogu povezivati tako da predstavljaju npr. DNF formule koja odgovara posmatranoj funkciji. Uvod u organizaciju računara 18

Minimizacija logičkih funkcija Radi smanjenja troškova proizvodnje i komplikovanosti sistema, teži se sledećim ciljevima: Smanjenje složenosti reprezentacije logičke funkcije Smanjenje broja različitih logičkih elemenata, pa se često koristi samo jedan element Ni ili Nili Uvod u organizaciju računara 19

Minimizacija logičkih funkcija Postoji vise načina minimizacije logičkih funkcija. Osnovni su: Algebarske transformacije Karnoove (Karnaugh) mape Metoda Kvin-MekKlaskog Uvod u organizaciju računara 20

Algebarske transformacije Algebarski pristup minimizaciji logičkih funkcija se zasniva na primenama raznih zakona uprošćavanja i zamene složenih podformula jednostavnijim, logički ekvivalentnim, formulama. Uvod u organizaciju računara 21

Primer F=( AΛBΛ C)V( AΛBΛC)V(AΛBΛ C) ( AΛBΛ C)V( AΛBΛC)V(AΛBΛ C)V( AΛBΛ C) AΛBΛ( CVC) V (AV A)ΛBΛ C AΛB V BΛ C F min =BΛ( AV C) Uvod u organizaciju računara 22

Karnoove mape Karnoove mape predstavljaju tablični metod minimizacije logičkih funkcija. Koriste se za funkcije do 6 promenljivih. Za veće brojeve promenljivih postaju nepregledne i previše složene. Uvod u organizaciju računara 23

Karnoove mape - opis Ako je n broj promenljivih, mapa se sastoji od 2 n kvadrata. Kolone i vrste mape se označavaju kombinacijama vrednosti promenljivih. Ako je širina (odnosno visina) mape n kvadrata, po širini (odnosno visini) se zadaju vrednosti za log 2 n promenljivih. Oznake kolona odnosno vrsta (kombinacije vrednosti pormenljivih) su poredjane tako da čine Grejov kod. Uvod u organizaciju računara 24

Primeri Uvod u organizaciju računara 25

Primeri Uvod u organizaciju računara 26

Karnoove mape - konstrukcija Logička funkcija koja je zapisana u obliku DNF, može se predstaviti pomoću Karnoove mape tako što se u svako polje mape upiše 1 ukoliko postoji konjunkcija u DNF takva da je njena vrednost 1 za vrednosti promenljivih koje odgovaraju tom polju. Karnoova mapa se takodje može dobiti i iz tablične reprezentacije funkcije, jednostavnim upisivanjem jedinica u polja koja odgovaraju vrstama tablice za koje je vrednost funkcije 1. Uvod u organizaciju računara 27

Primeri Uvod u organizaciju računara 28

Karnoove mape - konstrukcija Ukoliko tablica koja definiše funkciju nije definisana za sve vrednosti promenljivih (nemamo sve vrste), u polja mape koja odgovaraju tim vrstama možemo upisati neki specijalni simbol. Uobičajeni su d,?,*,n Takva polja pri minimizaciji možemo interpretirati kako nam odgovara. Uvod u organizaciju računara 29

Karnoove mape - minimizacija Pošto Karnoove mape direktno odgovaraju tablicama kojima se zadaju logičke funkcije, DNF formule koja odgovara mapi se može dobiti na isti način. Medjutim, tako dobijena formula ne mora biti minimalna. Minimizacija se zasniva na postupku uočavanja grupa od po 2 k jedinica kojima se konjunkcija može dodeliti kao grupi, umesto da se to radi pojedinačno kao kod konstrukcije iz tablice. Uvod u organizaciju računara 30

Karnoove mape - minimizacija Kod formiranja grupa jedinica, važe sledeća pravila: Grupe se sastoje samo od jedinica Broj jedinica u grupi mora biti stepen dvojke: 1,2,4,8,,2 i, Jedinice moraju biti rasporedjene u susednim poljima u obliku pravougaonika Svaka jedinica mora biti u nekoj grupi Grupe se mogu preklapati Grupe čija su polja u potpunosti sadržana u nekim drugim grupama treba zanemariti Smatra se da mapa ima oblik torusa, odnosno mogu se grupisati i jedinice koje postaju susedne kada se spoje naspramne ivice mape. Uvod u organizaciju računara 31

Karnoove mape - minimizacija Poštujući ova pravila može se formirati puno različitih grupisanja, odnosno, ova pravila ne odredjuju jednoznačno grupisanje jedinica. Osnovni princip koji garantuje minimalnost je: vršiti grupisanje tako da se sa što manje što većih grupa obuhvate sve jedinice. Uvod u organizaciju računara 32

Primeri Uvod u organizaciju računara 33

Karnoove mape - čitanje Kao što je i ranije naglašeno čitanje Karnoovih mapa bez grupisanja je jednostavno kao kod konstrukcije DNF iz tablice koja predstavlja funkciju. Posle grupisanja, mapa se tumači kao disjunkcija konjunkcija koje odgovaraju grupama, a ne pojedinačnim jedinicama, što dovodi do smanjenja reprezentacije funkcije. Uvod u organizaciju računara 34

Karnoove mape - čitanje Svaka promenljiva X koja je konstantna na svim poljima neke grupe učestvuje u konjunkciji koja se pridružuje toj grupi kao literal X ako je vrednost promenljive 1 ili X ako je njena vrednost 0. Što je grupa veća, to je manji broj promenljivih u konjunkciji koja joj se pridružuje. Uvod u organizaciju računara 35

Primer Uvod u organizaciju računara 36

Primer Uvod u organizaciju računara 37

Neodredjena polja Ukoliko mapa sadrži polja za koja nije odredjena vrednost (označena sa d,?,*,n ), njih tumačimo na način koji nam odgovara u cilju grupisanja jedinica u što manje što većih grupa. Uvod u organizaciju računara 38

Primer Uvod u organizaciju računara 39

Primer A B C D F 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 Uvod u organizaciju računara 40