Elementi spektralne teorije matrica

Σχετικά έγγραφα
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

Sistemi linearnih jednačina

Dijagonalizacija operatora

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

SISTEMI NELINEARNIH JEDNAČINA

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

Determinante. Inverzna matrica

Vektorski prostori. Vektorski prostor

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

Linearna algebra 2 prvi kolokvij,

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Osnovne teoreme diferencijalnog računa

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

1 Promjena baze vektora

Ispitivanje toka i skiciranje grafika funkcija

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

41. Jednačine koje se svode na kvadratne

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

Operacije s matricama

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4.

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

Analitička geometrija

Konačno dimenzionalni vektorski prostori

ELEKTROTEHNIČKI ODJEL

Zadaci iz Linearne algebre (2003/4)

Matematika 1 { fiziqka hemija

3.1 Granična vrednost funkcije u tački

Dvanaesti praktikum iz Analize 1

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Geometrija (I smer) deo 1: Vektori

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

18. listopada listopada / 13

Teorijske osnove informatike 1

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Zavrxni ispit iz Matematiqke analize 1

IZVODI ZADACI (I deo)

5 Ispitivanje funkcija

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

2 Jordanova forma. 2.1 Nilpotentni operatori

APROKSIMACIJA FUNKCIJA

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA

5. Karakteristične funkcije

4 Numeričko diferenciranje

Trigonometrijske nejednačine

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013.

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

Linearna algebra 2 prvi kolokvij,

Linearna algebra. skripta. Januar 2013.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

Uvod i vektorski prostori

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

4 Unitarni prostori. 4.1 Definicija i svojstva unitarnih prostora. K polje R ili C, V je vektorski prostor nad K

Linearni operatori. Stepenovanje matrica

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

Riješeni zadaci: Nizovi realnih brojeva

Norme vektora i matrica

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t)

III VEŽBA: FURIJEOVI REDOVI

Granične vrednosti realnih nizova

7 Algebarske jednadžbe

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Linearna algebra za fizičare, zimski semestar Mirko Primc

I Pismeni ispit iz matematike 1 I

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

Zbirka rešenih zadataka iz Matematike I

Neodred eni integrali

Ispit iz Matematike 2

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.

Osnovne definicije i rezultati iz Uvoda u linearnu algebru

radni nerecenzirani materijal za predavanja

4 Matrice i determinante

Matrice linearnih operatora i množenje matrica. Franka Miriam Brückler

Diferencijabilnost funkcije više promenljivih

Prediktor-korektor metodi

dr L. Stefanović, mr M. Matejić, dr S. Marinković DIFERENCIJALNE ZA STUDENTE TEHNIČKIH FAKULTETA SKC Niš, 2006.

Linearna algebra I, zimski semestar 2007/2008

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

PP-talasi sa torzijom

Otpornost R u kolu naizmjenične struje

ELEMENTARNE FUNKCIJE

numeričkih deskriptivnih mera.

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Transcript:

Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena vrednost i sopstveni vektor za operator A : X X ako je Au λu. Teorema. Ako su λ sopstvena vrednost i u odgovarajući sopstveni vektor operatora A : X X, tada je u takod e sopstveni vektor operatora B P (A) a I + a A + + a n A n koji odgovara sopstvenoj vrednosti P (λ) a + a λ + + a n λ n. Teorema 2. Neka su u, u 2,..., u n sopstveni vektori operatora A koji odgovaraju med usobno različitim sopstvenim vrednostima λ, λ 2,..., λ n. Tada je {u, u 2,..., u n } sistem linearno nezavisnih vektora. Matrični analogon problema sopstvenih vrednosti je definisan homogenim sistemom linearnih jednačina (A λi)x. Netrivijalna rešenja ovog sistema predstavljaju koordinatne reprezentacije sopstvenih vektora operatora A u bazi B. Za njih kažemo da su sopstveni vektori matrice A. Vrednosti λ za koje postoje ova netrivijalna rešenja predstavljaju odgovarajuće sopstvene vrednosti matrice A. Odred ujemo ih iz karakteristične jednačine pri čemu polinom det(a λi),

2 a λ a 2... a n a 2 a 22 λ... a 2n...... a n a n2... a nn λ zovemo karakteristični polinom matrice A. Teorema 3. (Kejli-Hamilton) Neka je P (λ) karakteristični polinom linearnog operatora A : X X. Tada je P (A) nula operator. Zadaci:. Odrediti karakteristični polinom i sopstvene vrednosti matrice 2 3 A 2 3. 3 2 Rešenje: Karakteristični polinom je jednak λ 2 3 2 3 λ 3 2 λ 6 λ 2 3 6 λ 3 λ 6 λ 2 λ 6 λ 2 3 λ 2 (6 λ) λ 2 λ λ (6 λ)(λ2 3). Sopstvene vrednosti matrice A su λ 6, λ 2 3 i λ 3 3. 2. Odrediti karakteristični polinom i sopstvene vrednosti matrice 4 A 2 3 3 2, 4 kao i sopstvene vrednosti matrice A 2. Rešenje: Karakteristični polinom je jednak

λ 4 7 λ 4 2 λ 3 3 λ 2 7 λ 2 λ 3 7 λ 3 λ 2 4 λ 7 λ 4 λ 7 λ 4 λ 2 λ 2 λ( λ)(2 λ)(7 λ). λ Sopstvene vrednosti matrice A su nule polinoma P (λ), a to su vrednosti λ, λ 2, λ 3 2 i λ 4 7. Sopstvene vrednosti matrice A 2 jednake su (λ i (A)) 2, pri čemu su λ i (A), i, 2, 3, 4, sopstvene vrednosti matrice A. To su vrednosti:,, 4 i 49. 3 3. Odrediti sopstvene vrednosti i sopstvene vektore matrica [ ] 3 A i B A 2 3A + I. 3 Rešenje: Odred ujemo najpre sopstvene vrednosti i sopstvene vektore matrice A. Karakteristični polinom matrice A je P (λ) λ 3 3 λ λ2 2λ 8, a njegove nule λ 2 i λ 2 4 su sopstvene vrednosti matrice A. Sopstveni vektori u [x y] T odred uju se rešavanjem homogenog sistema jednačina, čiji je matrični oblik Au λu (A λi)u [ λ 3 3 λ ] [ ] x y [ ]. Za λ 2 sistem postaje [ 3 3 3 3 ] [ ] x y [ ], pa se svodi na jednu jednačinu 3x + 3y, koja je zadovoljena za y x, x R. Zato je sopstveni vektor matrice A koji odgovara sopstvenoj vrednosti λ 2 svaki vektor oblika

4 u [ ] [ ] x x, x R \ {}. x Za λ 2 4 sistem postaje [ 3 3 3 3 ] [ ] x y [ ], tj. 3x + 3y, 3x 3y, i zadovoljen je za y x, x R. Sopstveni vektor matrice A koji odgovara sopstvenoj vrednosti λ 2 4 je svaki vektor oblika [ ] [ ] x u 2 x, x R \ {}. x Prema Teoremi, sopstvene vrednosti matrice B A 2 3A + I su λ λ 2 3λ +, λ 2 λ 2 2 3λ 2 + 5, a odgovarajući sopstveni vektori su u u i u 2 u 2 redom. 4. Odrediti sopstvene vrednosti i sopstvene vektore matrice 2 A. Da li su sopstveni vektori matrice A linearno nezavisni? Rešenje: Sopstvene vrednosti odred ujemo kao nule karakterističnog polinoma 2 λ λ ( + λ)( λ)(2 λ). λ Sopstvene vrednosti su: λ, λ 2 i λ 3 2. Sopstveni vektori su netrivijalna rešenja homogenog sistema linearnih jednačina 2 λ x (A λi)u λ y. λ z

5 Za λ homogen sistem je oblika 3 x 3x + z y x 2 z 2z u y y, y R \ {}. x z y R \ {} Za λ 2 homogen sistem je jednak x 2 y x + z x 2y x 2y z 2y z y R \ {} 2y 2 u 2 y 2y y 2, y R \ {}. Za λ 3 2 homogen sistem je x z 3 y x 3y z z 3y 3 u 3 y y, y R \ {}. x 3y z y R \ {} Sopstveni vektori u, u 2 i u 3 su linearno nezavisni po Teoremi 2., jer odgovaraju različitim sopstvenim vrednostima. 5. Odrediti sopstvene vrednosti i sopstvene vektore matrica 3 4 A 2 i B A 5 + 3I. 3 Rezultat: Karakteristični polinom matrice A: P (λ) (2 λ)(λ ) 2. Sopstvene vrednosti matrice A: λ 2, λ 2 λ 3. Sopstveni vektori matrice A:

6 2 2 u t, t R \ {}, u 2 t, t R \ {}. 3 Sopstvene vrednosti matrice B: λ 35, λ 2 λ 3 4. Sopstveni vektori matrice B: 2 u u t, t R \ {}, 2 u 2 u 2 t, t R \ {}. 3 6. Odrediti sopstvene vrednosti i sopstvene vektore matrice 3 a A 3 a 3 ako je: a) a ; b) a. Rešenje: Karakteristični polinom matrice A je 3 λ a 3 λ a 3 λ (3 λ)3, pa su sve tri sopstvene vrednosti matrice A jednake: λ λ 2 λ 3 3. Sopstvene vektore odred ujemo rešavanjem sistema jednačina tj. za λ 3. U razvijenom obliku sistem glasi (A λi)u, u [x y z] T, 3 λ a x 3 λ a y, 3 λ z (3 λ)x + ay, (3 λ)y + az, (3 λ)z, tj. ay, az.

a) Ako je a, sistem je zadovoljen za y, z, x R, pa su sopstveni vektori oblika x u x, x R \ {}. b) Ako je a, sistem je zadovoljen za sve vrednosti x, y, z R, pa su sopstveni vektori oblika x u y x + y + z, x, y, z R, x 2 + y 2 + z 2. z Vidimo da u ovom slučaju postoje tri linearno nezavisna sopstvena vektora matrice A, na primer u, u 2, u 3. 7 7. Data je matrica 2 A. 3 a) Odrediti karakteristični polinom matrice A. b) Odrediti sopstvene vrednosti i sopstvene vektore matrice A. c) Primenom Kejli Hamiltonove teoreme odrediti matricu B A 8 4A 7 + A 6 + 6A 5. d) Primenom Kejli Hamiltonove teoreme odrediti inverznu matricu A. Rešenje: a) Karakteristični polinom matrice A je 2 λ λ 3 λ λ3 + 4λ 2 λ 6. b) Kako karakteristični polinom u faktorisanom obliku glasi P (λ) (λ + )(λ 2)(λ 3),

8 sopstvene vrednosti matrice A su λ, λ 2 2, λ 3 3. Odgovarajući sopstveni vektori dobijaju se rešavanjem sistema jednačina (A λ i I)u, i, 2, 3, i glase: u r, 3 u 2 s, 4 u 3 t, r, s, t R \ {}. 4 c) Matrica B može da se predstavi kao B A 8 4A 7 + A 6 + 6A 5 A 5 ( A 3 + 4A 2 A 6I) A 5 P (A), gde je P (λ) karakteristični polinom matrice A. Prema Kejli Hamiltonovoj teoremi, P (A) je nula matrica, pa je i B. d) Kako je det A 6, inverzna matrica A postoji. Iz Kejli-Hamiltonove teoreme imamo da je P (A) nula matrica, to jest važi P (A) A 3 + 4A 2 A 6I. Ako poslednju jednakost pomnožimo sa A A 3 + 4A 2 A 6I / A dobijamo A 2 + 4A I 6A A 6 ( A2 + 4A I). Računamo A 2 2 3 2 3 4 5 9 i odred ujemo A A 6 ( A2 + 4A I) 6 3 3 6. 6 2 4 5 + 2 3 9 2 6 3