PAU XUÑO 2015 FÍSICA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PAU XUÑO 2015 FÍSICA"

Transcript

1 PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución ás cuestións. As respostas deben ser razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto. O alumno elixirá unha das dúas opcións OPCIÓN A C.1.- Un satélite artificial de masa m que xira arredor da Terra nunha órbita de radio r ten unha velocidade v. Se cambia de órbita pasando a outra máis próxima á Terra, a súa velocidade debe: a) aumentar; b) diminuír; c) non precisa cambiar de velocidade. C.2.- Nunha célula fotoeléctrica, o cátodo metálico ilumínase cunha radiación de λ = 175 nm e o potencial de freado é de 1 V. Cando usamos unha luz de 250 nm, o potencial de freado será: a) maior; b) menor; c) igual. C.3.- Un raio de luz láser propágase nun medio acuoso (índice de refracción n = 1,33) e incide na superficie de separación co aire (n = 1). O ángulo límite é: a) 36,9 ; b) 41,2 ; c) 48,8. C.4- Explica cómo se pode determinar a aceleración da gravidade utilizando un péndulo simple, e indica o tipo de precaucións que debes tomar á hora de realizar a experiencia. P.1.- a) Indica cál é o módulo, dirección e sentido do campo magnético creado por un fío condutor rectilíneo percorrido por unha corrente e realiza un esquema que ilustre as características de dito campo. Considérese agora que dous fíos condutores rectilíneos e paralelos de grande lonxitude transportan cadansúa corrente eléctrica. Sabendo que a intensidade dunha das correntes é o dobre que a da outra corrente e que, estando separados 10 cm, se atraen cunha forza por unidade de lonxitude de 4, N m -1 b) calcula as intensidades que circulan polos fíos. c) Canto vale o campo magnético nun punto situado entre os dous fíos, a 3 cm do que transporta menos corrente? (DATO: µ 0 = 4π 10-7 N A -2 ) P.2.- Unha masa de 200 g está unida a un resorte e oscila nun plano horizontal cun movemento harmónico simple (M.H.S). A amplitude do movemento é A = 40 cm, e a elongación no instante inicial é x = -40 cm. A enerxía total é 8 J. Calcula: a) a constante elástica do resorte; b) a ecuación do M.H.S. c) a velocidade e aceleración máximas, indicando os puntos da traxectoria nos que se alcanzan ditos valores. OPCIÓN B C.1.- Dúas cargas distintas Q e q, separadas unha distancia d, producen un potencial cero nun punto P situado entre as cargas e na liña que as une. Isto quere dicir que: a) as cargas deben ter o mesmo signo; b) o campo eléctrico debe ser nulo en P; c) o traballo necesario para traer unha carga desde o infinito ata P é cero. C.2.-Unha partícula cargada penetra nunha rexión onde existe un campo magnético uniforme perpendicular á velocidade da partícula. O raio da órbita descrita: a) aumenta se aumenta a enerxía cinética da partícula; b) aumenta se aumenta a intensidade do campo magnético; c) non depende da enerxía cinética da partícula. C.3.- O período de semidesintegración dun elemento radioactivo que se desintegra emitindo unha partícula alfa é de 28 anos. Canto tempo terá que transcorrer para que a cantidade de mostra sexa o 75% da inicial? a) anos; b) 75 anos; c) 11,6 anos. C.4.- Na determinación da constante elástica dun resorte de lonxitude inicial 21,3 cm, polo método estático, obtivéronse os seguintes valores: (g = 9,8 m s -2 ) masa (g) 20,2 30,2 40,3 50,3 60,4 70,5 lonxitude (cm) 27,6 30,9 34,0 37,2 40,5 43,6 Calcula a constante elástica coa súa incerteza en unidades do sistema internacional. P.1.- O vehículo espacial Apolo VIII estivo en órbita circular arredor da Lúa a 113 km sobre a súa superficie. Calcular: a) o período da órbita; b) as velocidades lineal e angular do vehículo; c) a velocidade de escape á atracción lunar desde esa posición. (Datos: G = 6, N m 2 kg -2 ; R LÚA = km; M LÚA = 7, kg) P.2.- Unha onda harmónica transversal propágase na dirección do eixe x e vén dada pola seguinte expresión (en unidades do sistema internacional): y(x,t) = 0,45 cos (2x - 3t). Determinar: a) a velocidade de propagación; b) a velocidade e aceleración máximas de vibración das partículas; c) a diferenza de fase entre dous estados de vibración da mesma partícula cando o intervalo de tempo transcorrido é de 2 s.

2 PAU SETEMBRO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución ás cuestións. As respostas deben ser razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto. O alumno elixirá unha das dúas opcións OPCIÓN A C.1.- Indica, xustificando a resposta, cal das seguintes afirmacións é correcta: a) a unidade de indución magnética é o weber (Wb); b) o campo magnético non é conservativo; c) dous condutores rectilíneos paralelos e indefinidos, polos que circulan correntes I 1 e I 2 en sentido contrario, atráense. C.2.- Para unha partícula sometida a una forza central verificase que: a) se conserva o seu momento angular respecto ó centro de forzas; b) o traballo realizado por dita forza depende da traxectoria seguida entre dous puntos dados; c) se conserva o vector momento lineal. C.3.- No interior dunha esfera condutora cargada: a) o potencial non é nulo; b) a carga non é nula; c) o campo eléctrico non é nulo. C.4.- Describe, brevemente, a práctica de óptica xeométrica que realizaches no laboratorio, axudándote polo menos dunha marcha de raios. P.1.- A frecuencia limiar do Wolframio é 1, Hz. a) Xustifica que, se se ilumina a súa superficie con luz de lonxitude de onda 1, m, se emiten electróns; b) calcula a lonxitude de onda incidente para que a velocidade dos electróns emitidos sexa de 4, m s -1 ; c) cal é a lonxitude de onda de De Broglie asociada ós electróns emitidos coa velocidade de 4, m s -1? (Datos: (h = 6, J s; c = m s -1 ; m e = 9, kg) P.2.- Unha masa de 0,5 kg está unida ó extremo dun resorte (de masa desprezable) situado sobre un plano horizontal, permanecendo fixo o outro extremo do resorte. Para estirar o resorte unha lonxitude de 4 cm requírese unha forza de 5 N. Déixase o sistema masa-resorte en liberdade. Calcula: a) o traballo realizado pola forza elástica desde a posición inicial x = 4 cm ata a súa posición de equilibrio x = 0; b) o módulo da velocidade da masa cando se atopa a 2 cm da súa posición de equilibrio; c) a frecuencia de oscilación do citado resorte se inicialmente se estirase 6 cm. OPCIÓN B C.1.- Indica, xustificando a resposta, cal das seguintes afirmacións é correcta: a) a actividade dunha mostra radiactiva é o número de desintegracións que teñen lugar en 1 s; b) período de semidesintegración e vida media ten o mesmo significado; c) A radiación gamma é a emisión de electróns por parte do núcleo dun elemento radiactivo. C.2.- Cando un movemento ondulatorio se reflicte, a súa velocidade de propagación: a) aumenta; b) depende da superficie de reflexión; c) non varía. C.3.- Indúcese corrente en sentido horario nunha espira en repouso se: a) acercamos o polo norte ou afastamos o polo sur dun imán rectangular; b) afastamos o polo norte ou acercamos o polo sur; c) mantemos en repouso o imán e a espira. C.4.- Determina a aceleración da gravidade coa súa incerteza a partir dos seguintes datos experimentais: Lonxitude do péndulo (m) 0,60 0,82 0,90 1,05 1,33 Tempo de 20 oscilacións (s) 31,25 36,44 38,23 41,06 46,41 P.1.- Un satélite artificial de 500 kg de masa xira nunha órbita circular a 5000 km de altura sobre a superficie da Terra. Calcula: a) a súa velocidade orbital; b) a súa enerxía mecánica na órbita; c) a enerxía que hai que comunicarlle para que, partindo da órbita, chegue ó infinito. (Datos: R T = 6370 km; g 0 = 9,8 m s -2 ) P.2.- Dúas láminas condutoras con igual carga e signo contrario están colocadas horizontalmente e separadas 5 cm. A intensidade do campo eléctrico no seu interior é 2, N C -1. Una micropinga de aceite cuxa masa é 4, kg, e con carga negativa, está en equilibrio suspendida nun punto equidistante de ambas as placas. a) Razoa cál das dúas láminas está cargada positivamente; b) determina a carga da micropinga c) calcula a diferenza de potencial entre as láminas condutoras. (Dato: g = 9,8 m s -2 )

3 CONVOCATORIA DE XUÑO Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas... 0,25 (por problema) Os erros de cálculo,... 0,25 (por problema) Nas cuestións teóricas consideraranse tamén válidas as xustificacións por exclusión das cuestións incorrectas. (As solucións ás cuestións e problemas que a continuación se sinalan son simples indicacións que non exclúen outras posibles respostas ) OPCIÓN A C.1. Un satélite artificial de masa m que xira arredor da Terra nunha órbita de radio r ten unha velocidade v. Se cambia de órbita pasando a outra máis próxima á Terra, a súa velocidade debe: a) aumentar; b)diminuír; c) non precisa cambiar de velocidade C.2. Nunha célula fotoeléctrica, o cátodo metálico ilumínase cunha radiación de =175 nm e o potencial de freado é de 1 V. Cando usamos unha luz de 250 nm, o potencial de freado será: a) maior; b) menor; c) igual. SOL:a.....máx. 1,00 Tendo en conta que a velocidade orbital é: ; se diminúe o valor de r, a velocidade orbital aumenta. SOL:b máx. 1,00 A partires da ecuación de Einstein para o efecto fotoeléctrico: Se aumenta a lonxitude de onda da luz incidente, a frecuencia con que inciden os fotóns será menor, polo que a enerxía cinética dos electróns extraídos será menor, co que tamén será menor o potencial de freado. C.3. Un raio de luz propágase nun medio acuoso (índice de refracción n=1,33) e incide na superficie de separación co aire (n=1). O ángulo límite é: a) 36,9 ; b) 41,2 ; c) 48,8. C.4. Explica cómo se pode determinar a aceleración da gravidade utilizando un péndulo simple, e indica o tipo de precaucións que debes tomar á hora de realizar a experiencia. SOL: c.....máx. 1,00 Aplicando a lei de Snell para o ángulo límite (que orixina un ángulo de refracción de 90 ): Explicación axeitada (material, procedemento e cálculo) para a determinación de g (analítica ou gráficamente), indicando a ecuación utilizada...0,50 e das precaucións relativas a: - amplitudes angulares de oscilación...0,25 - determinación do período de oscilación...0,25. máx 1,00

4 P.1. a) Indica cal é o módulo, dirección e sentido do campo magnético creado por un fío condutor rectilíneo percorrido por unha corrente e realiza un esquema que ilustre as características de dito campo. Considérese agora que dous fíos condutores rectilíneos e paralelos de grande lonxitude transportan cadansúa corrente eléctrica. Sabendo que a intensidade dunha das correntes é o dobre que a da outra corrente e que, estando separados 10 cm, se atraen cunha forza por unidade de lonxitude de 4, N m -1 : b) Calcula as intensidades que circulan polos fíos. c) Canto vale o campo magnético nun punto situado entre os dous fíos, a 3 cm do que transporta menos corrente? DATO: 0 = N A -2 a. Debuxo das liñas de campo magnético producidas por un fío condutor rectilíneo, indicando dirección, sentido e módulo do campo magnético ,00 Debuxo completo con indicación de dirección e sentido de B: 0,75 Módulo de B: 0,25 b. Determinación das intensidade que circulan por cada un dos fíos ,00 Tendo en conta que se produce unha forza atractiva entre os fíos de corrente, as intensidades deben ter o mesmo sentido. Aplicando a 2ª lei de Laplace e a ecuación do campo creado por o fío condutor I a sobre I b resulta (prescíndese do carácter vectorial): Considerando Só debuxo: 0,25 Só ecuación: 0,25 c. Determínase o valor do campo magnético nun punto situado a 3 cm de I a e a 7 cm de I b ,00 Debuxo completo con indicación de dirección e sentido de B: 0,50 Cálculo numérico: 0,50

5 P.2. Unha masa de 200 g está unida a un resorte e oscila nun plano horizontal cun movemento harmónico simple (MHS). A amplitude do movemento é A= 40 cm, e a elongación no instante inicial é x=-40 cm. A enerxía total é 8 J. Calcula: a) A constante elástica do resorte. b) A ecuación do M.H.S. c) A velocidade e aceleración máximas, indicando os puntos da traxectoria nos que se alcanzan ditos valores. a. Determinación da constante elástica do resorte ,00 b. Ecuación do MHS: ( )...1,00 ( ) ( ) ( ) c. Velocidade máxima e posición ,50 ( ) Aceleración máxima e posición ,50 ( ) Determinación de : 0,50 Determinación de φ : 0,25 Ecuación: 0.25 Determinación de v max : 0,25 Determinación de posición:0,25 Determinación de a max : 0,25 Determinación de posición:0,25

6 OPCIÓN B C.1. Dúas cargas distintas Q e q, separadas unha distancia d, producen un potencial cero nun punto P situado entre as cargas e na liña que as une. Isto quere dicir que: a) as cargas deben ter o mesmo signo; b) o campo eléctrico debe ser nulo en P; c) o traballo necesario para traer unha carga desde o infinito ata P é cero. C.2. Unha partícula cargada penetra nunha rexión onde existe un campo magnético uniforme perpendicular á velocidade da partícula. O raio da órbita descrita: a) aumenta se aumenta a enerxía cinética da partícula; b) aumenta se aumenta a intensidade do campo magnético; c) non depende da enerxía cinética da partícula. SOL: c.....máx. 1,00 O potencial eléctrico é o traballo por unidade de carga que hai que facer para traer unha carga de proba positiva dende o infinito ata ese punto. Por iso, se o potencial é cero nun punto P, o traballo realizado para traer esa carga dende o infinito será 0. ( ) SOL: a máx. 1,00 Aplicando a lei de Lorentz para determinar a forza que actúa sobre a carga en movemento na rexión onde actúa o campo magnético: Como Se aumenta a enerxía cinética, o raio aumentará. C.3. O período de semidesintegración dun elemento radioactivo que se desintegra emitindo unha partícula alfa é de 28 anos. Canto tempo terá que transcorrer para que a cantidade da mostra sexa o 75% da inicial?: a) 4234 anos; b) 75 anos; c) 11,6 anos. C.4. Na determinación da constante elástica dun resorte de lonxitude inicial 21,3 cm, polo método estático, obtivéronse os seguintes valores: (g=9,8 m s -2 ) masa (g) 20,2 30,2 40,3 50,3 60,4 70,5 lonxitude (cm) 27,6 30,9 34,0 37,2 40,5 43,6 Calcula a constante elástica coa súa incerteza en unidades do sistema internacional. SOL: c máx. 1,00 O tempo de semidesintegración defínese como o tempo que tardan en desintegrarse a metade dos átomos da mostra inicial. Se este tempo é de 28 anos, resulta obvio que a única opción posible e que o tempo para a desintegración do 25% da mostra inicial sexa de 11,6 anos. Se calculamos ; Determinación de k (gráfica ou analíticamente), coas cifras significativas e a incerteza apropiadas ,00 masa (g) 20,2 30,2 40,3 50,3 60,4 70,5 lonxitude (cm) 27,6 30,9 34,0 37,2 40,5 43,6 Elongación (cm) 6,3 9,6 12,7 15,9 19,2 22,3 Forza (N) 0,198 0,296 0,395 0,493 0,592 0,691 k (N m -1 ) 3,14 3,08 3,11 3,10 3,08 3,10 k= 3,10± 0,02 N m -1 (considerase como correcta calquera outro resultado para o valor da incerteza coherente coas cifras significativas de k) K medio = 3,10 N m ,75 Tratamento axeitado dos datos...0,25

7 P.1. O vehículo espacial Apolo VIII estivo en órbita circular arredor da Lúa a 113 km sobre a súa superficie. Calcular: a) O período da órbita; b) As velocidades lineal e angular do vehículo. c) A velocidade de escape á atracción lunar desde esa posición. DATOS: G=6, N m 2 kg -2 ; R LÚA =1740 km; M LÚA =7, kg a. Determinación do período: ,00 b. Velocidade lineal ,50 Velocidade angular: ,50 c. Velocidade de escape: ,00 P.2. Unha onda harmónica transversal propágase na dirección do eixe X e vén dada pola seguinte expresión (en unidades so sistema internacional): y(x,t)=0,45 cos (2x-3t). Determinar: a) A velocidade de propagación; b) A velocidade e aceleración máximas de vibración das partículas; c) A diferenza de fase entre dous estados de vibración da mesma partícula cando o intervalo de tempo transcorrido é de 2 s. a. Velocidade de propagación : ( ) ( ) ,00 b. Velocidade máxima ,50 ( ) Aceleración máxima ,50 ( ) c. Diferenza de fase: ,00 ( ) ( )

8 PROBAS DE ACCESO Á UNIVERSIDADE (PAAU) CONVOCATORIA DE SETEMBRO Curso Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas... 0,25 (por problema) Os erros de cálculo,... 0,25 (por problema) Nas cuestións teóricas consideraranse tamén válidas as xustificacións por exclusión das cuestións incorrectas. (As solucións ás cuestións e problemas que a continuación se sinalan son simples indicacións que non exclúen outras posibles respostas ) OPCIÓN A C.1. Indica, xustificando a resposta, cal das seguintes afirmacións é corrrecta: a) a unidade de inducción magnética é o weber (Wb); b) o campo magnético non é conservativo; c) dous condutores rectilíneos e indefinidos, polos que circulan correntes I 1 e I 2 de sentido contrario, atráense. C.2. Para unha partícula sometida a unha forza central verifícase que: a) consérvase o seu momento angular respecto ao centro de forzas; b) o traballo realizado por dita forza depende da traxectoria seguida entre dous puntos dados. c) consérvase o momento lineal. C.3. No interior dunha esfera condutora cargada: a) o potencial non é nulo. b) a carga non é nula c) o campo eléctrico non é nulo SOL:b.....máx. 1,00 O campo magnético non é conservativo xa que B dl 0. O traballo realizado pola forza magnética non depende dos puntos inicial e final, senón que depende do camiño elixido para determinalo. SOL:a máx. 1,00 Nun campo de forzas centrais, a forza é de tipo radial, é dicir, os vectores F e r teñen a mesma dirección, polo que o seu producto vectorial será nulo (vectores paralelos). Así pois, por tratarse dun campo de forzas centrais (r e F son vectores paralelos), o momento da forza será nulo e estamos en condicións de aplica-lo principio de conservación do momento angular. Se o momento da forza é nulo, o momento angular permanecerá constante. M F = rxf = 0 dl M F = = 0 L = cte dt Polo tanto L será constante SOL: a máx. 1,00 Por ser un condutor cargado en equilibrio electrostático, a carga distribúese uniformemente na súa superficie exterior, polo que o campo eléctrico no interior é nulo. Como E = dv, se E é nulo, o potencial será constante. dr C.4. Describe brevemente a práctica de óptica xeométrica que realizaches no laboratorio, axudándote polo menos dunha marcha de raios. Explicación axeitada (material, procedemento e indicando a ecuación utilizada )...0,50 Marcha de raios...0, máx 1,00

9 P.1. A frecuencia limiar do Wolframio é 1, Hz. a) xustifica que, se se ilumina a súa superficie con luz de lonxitude de onda 1, m emítense electróns. b) calcula a lonxitude de onda incidente para que a velocidade dos electróns emitidos sexa de 4, m s -1. c) cal é a lonxitude de onda de De Broglie asociada ós electróns emitidos coa velocidade de 4, m s -1? a. Emitense electróns se : f > f 0 o λ< λ 0 f = C = = 2,00 λ 1, Hz f> f 0 Logo emítense electróns ,00 b. hf = hf mv2 6, f = 6, , , (4, ) 2 ; f = 1, Hz λ = C = = 2, 08 f 1, Hz ,00 c. λ = h = h = 6, p mv 9, ,50 10 = 1, m ,00 P.2. Unha masa de 0,5 kg está unida ó extremo dun resorte (de masa desprezable) situado sobre un plano horizontal, permanecendo fixo o outro extremo do resorte. Para estirar o resorte unha lonxitude de 4 cm requírese unha forza de 5 N. Deixase o sistema masa-resorte en liberdade. Calcula: a) o traballo realizado pola forza elástica desde a posición inicial x= 4 cm ata a súa posición de equilibrio x=0; b) o módulo da velocidade da masa cando se atopa a 2 cm da súa posición de equilibrio. c) a frecuencia de oscilación do citado resorte se inicialmente se estirase 6 cm. a. W F elástica A 0 =(E pa -E p0 )= 1 2 ka2 Cálculo de k: F=k x 5=k ; k = 125 N m -1 W Felástica A 0 = ( ) 2 = 0,10 J ,00 b. E CA + E PA = E CB + E PB 0 + 0,1 = 1 0,5 v B ( ) 2 ; v B = 0,55ms ,00 c. Mesmo resorte Igual k f = 1 2π k m = 1 2π 125 = 2, 5 Hz 0,5...1,00

10 OPCIÓN B C.1. Indica, xustificando a resposta, cal das seguintes afirmacións é correcta: a) a actividade dunha mostra radiactiva é o número de desintegracións que teñen lugar en 1 s. b) período de semidesintegración e vida media teñen o mesmo significado. c) a radiación gamma é a emisión de electróns por parte do núcleo dun elemento radiactivo. C.2. Cando un movemento ondulatorio se reflicte, a súa velocidade de propagación: a) aumenta b) depende da superficie de reflexión c) non varía C.3. Indúcese corrente en sentido horario nunha espira en repouso se: a) acercamos o polo norte ou afastamos o polo sur dun imán rectangular. b) afastamos o polo norte ou acercamos o polo sur c) mantemos en repouso o imán e a espira. SOL: a.....máx. 1,00 A actividade dunha mostra radiactiva representa a velocidade de desintegración da mostra, expresándose como: A(t) = dn(t) SOL: c máx. 1,00 A velocidade é unha característica do medio de propagación. Na reflexión non hai cambio de medio, polo tanto non hai cambio de velocidade. SOL: b máx. 1,00 Segundo a lei de Lenz, cando hai un afastamento do norte ou un acercamento do sur, a forma de opoñerse é que a cara da espira que mira ao imán sexa un sur, e dicir, que a corrente circule en sentido horario. dt C.4. Determina a aceleración da gravidade coa súa incerteza a partir dos seguintes datos experimentais: Determinación de g (gráfica ou analíticamente), coas cifras significativas e a incerteza apropiadas ,00 T = 2π l g g = 4π2 l T 2 Lonxitude do péndulo (m) ,33 Tempo de 20 oscilacións 31,25 36,44 38,23 41,06 46,41 g = 9,74 ± 0,03 m s 2 (considerase como correcta calquera outro resultado para o valor da incerteza coherente coas cifras significativas de g)

11 P.1. Un satélite artificial de 500 kg de masa xira nunha órbita circular a 5000 km de altura sobre a superficie da Terra. Calcula: a) a súa velocidade orbital b) a súa enerxía mecánica na órbita c) a enerxía que hai que comunicarlle para que, partindo da órbita, chegue ao infinito. (DATOS: R T =6370 km; g=9,8 m s -2 ) P.2. Dúas láminas condutoras, con igual carga e signo contrario están colocadas horizontalmente e separadas 5 cm. A intensidade de campo eléctrico no seu interior é 2, N C -1. Unha micropinga de aceite cuxa masa é 4, kg, e con carga negativa, está en equilibrio suspendida nun punto equidistante de ambas as placas. a) Razoa cal das dúas láminas está cargada positivamente. b) Determina a carga da micropinga. c) Calcula a diferenza de potencial entre as láminas condutoras. (Datos: g=9,8 m s -2 ) a. Determinación da velocidade orbital ,00 F g = F c G M T m r 2 = m v2 r v = G M T r = g 0 R T 2 r v = 5, m s 1 b. Enerxía mecánica na órbita E m = E c + E p = 1 2 mv2 G M T m = 1 G M T m = 1 g0 m R 2 T = 8, J... 1,00 r 2 r 2 r c. Enerxía para chegar ao infinito: ,00 E órbita + E comunicada = E = 0 E comunicada = 8, J a. a. A superior ,00 Para que micropinga esté en equilibrio, a forza electrostática deberá estar dirixida cara arriba e, como a carga de dita micropinga é negativa, o campo electrostático deberá ter sentido contrario á forza. [Realizar o diagrama de forzas] b. m g = q E q = 1, C ,00 c. V 1 V 2 = E d = 1, V ,00

PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B

PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 SETEMBRO 2015 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior. ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...

Διαβάστε περισσότερα

PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso

PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso 2017-2018 Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades

Διαβάστε περισσότερα

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU XUÑO 2011 FÍSICA

PAU XUÑO 2011 FÍSICA PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO PROBLEMAS CAMPO ELECTROSTÁTICO 1. Dúas cargas eléctricas de 3 mc están situadas en A(4, 0) e B(-4, 0) (en metros). Calcula: a) O campo eléctrico en C(0,

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 10 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 17-18 http://ciug.gal/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2017. Un astronauta está no interior

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ). 22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada

Διαβάστε περισσότερα

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735

Διαβάστε περισσότερα

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS 1. A luz do Sol tarda 5 10² s en chegar á Terra e 2,6 10³ s en chegar a Xúpiter. a) O período de Xúpiter orbitando arredor do Sol. b) A velocidade orbital

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCIÓN MÉTODO 1. En xeral: Debúxanse as forzas que actúan sobre o sistema. Calcúlase a resultante polo principio de superposición. Aplícase a 2ª lei

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Proba de Avaliación do Bacharelato para o Acceso á Universidade Código: 23 XUÑO 2018 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado).

Διαβάστε περισσότερα

24/10/06 MOVEMENTO HARMÓNICO SIMPLE

24/10/06 MOVEMENTO HARMÓNICO SIMPLE NOME: CALIFICACIÓN PROBLEMAS (6 puntos) 24/10/06 MOVEMENTO HARMÓNICO SIMPLE 1. Dun resorte elástico de constante k= 500 Nm -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA

PAU XUÑO 2016 FÍSICA PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EJERCICIOS DE VIBRACIONES Y ONDAS

EJERCICIOS DE VIBRACIONES Y ONDAS EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)

Διαβάστε περισσότερα

Exercicios de Física 02a. Campo Eléctrico

Exercicios de Física 02a. Campo Eléctrico Exercicios de Física 02a. Campo Eléctrico Problemas 1. Dúas cargas eléctricas de 3 mc están situadas en A(4,0) e B( 4,0) (en metros). Caalcula: a) o campo eléctrico en C(0,5) e en D(0,0) b) o potencial

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FISICA 2º BAC 27/01/2007

FISICA 2º BAC 27/01/2007 POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU SETEMBRO 2014 FÍSICA

PAU SETEMBRO 2014 FÍSICA PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS INTRODUCIÓN MÉTODO 1. En xeral: a) Debúxanse as forzas que actúan sobre o sistema. b) Calcúlase cada forza. c) Calcúlase a resultante polo principio

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Xuño 2006

PAAU (LOXSE) Xuño 2006 PAAU (LOXSE) Xuño 006 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).

Διαβάστε περισσότερα

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B ABAU Código: 25 MODELO DE EXAME FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 204 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Xuño 2002

PAAU (LOXSE) Xuño 2002 PAAU (LOXSE) Xuño 00 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).

Διαβάστε περισσότερα

Exercicios de Física 02b. Magnetismo

Exercicios de Física 02b. Magnetismo Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2006

PAAU (LOXSE) Setembro 2006 PAAU (LOXSE) Setembro 2006 Código: 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (,5 cada apartado). Cuestións 4 puntos ( cada cuestión, teórica

Διαβάστε περισσότερα

PAU Xuño 2011 FÍSICA OPCIÓN A

PAU Xuño 2011 FÍSICA OPCIÓN A PAU Xuño 20 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 SETEMBRO 2013 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

EXERCICIOS DE REFORZO: RECTAS E PLANOS

EXERCICIOS DE REFORZO: RECTAS E PLANOS EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto

Διαβάστε περισσότερα

ÓPTICA- A LUZ Problemas PAAU

ÓPTICA- A LUZ Problemas PAAU ÓPTICA- A LUZ Problemas PAAU XUÑO-96 CUESTION 2. opa Disponse de luz monocromática capaz de extraer electróns dun metal. A medida que medra a lonxitude de onda da luz incidente, a) os electróns emitidos

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

Exercicios de Física 03a. Vibracións

Exercicios de Física 03a. Vibracións Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal

Διαβάστε περισσότερα

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O? EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10¹⁴ Hz incide cun ángulo de incidencia de 30 sobre unha lámina de vidro de caras plano-paralelas de espesor 10

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2004

PAAU (LOXSE) Setembro 2004 PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade

Διαβάστε περισσότερα

ELECTROMAGNETISMO Problemas PAAU

ELECTROMAGNETISMO Problemas PAAU ELECTROMAGNETISMO Problemas PAAU XUÑO-96 PROBLEMA 2. op B Dadas as cargas puntuais q 1 = 80 µc, q 2 = -80 µc y q 3 = 40 µc situadas nos puntos A (-2,0), B(2,0) y C(0,2) respectivamente (coordenadas en

Διαβάστε περισσότερα

Tema 3. Espazos métricos. Topoloxía Xeral,

Tema 3. Espazos métricos. Topoloxía Xeral, Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

Exercicios de Física 01. Gravitación

Exercicios de Física 01. Gravitación Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na

Διαβάστε περισσότερα

PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN

PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN "O que sabemos é unha pinga de auga, o que ignoramos é o océano." Isaac Newton 1. Un globo aerostático está cheo de gas Helio cun volume de gas de 5000 m 3. O peso

Διαβάστε περισσότερα

Materiais e instrumentos que se poden empregar durante a proba

Materiais e instrumentos que se poden empregar durante a proba 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

Resorte: estudio estático e dinámico.

Resorte: estudio estático e dinámico. ESTUDIO DO RESORTE (MÉTODOS ESTÁTICO E DINÁMICO ) 1 Resorte: estudio estático e dinámico. 1. INTRODUCCIÓN TEÓRICA. (No libro).. OBXECTIVOS. (No libro). 3. MATERIAL. (No libro). 4. PROCEDEMENTO. A. MÉTODO

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación: VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó

Διαβάστε περισσότερα

Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física

Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física Probas de acceso a ciclos formativos de grao superior Proba de Física Código CSPEB03 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións.

Διαβάστε περισσότερα

Física e Química 4º ESO

Física e Química 4º ESO Física e Química 4º ESO DEPARTAMENTO DE FÍSICA E QUÍMICA Física: Temas 1 ao 6. 01/03/07 Nome: Cuestións 1. Un móbil ten unha aceleración de -2 m/s 2. Explica o que significa isto. 2. No medio dunha tormenta

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

Procedementos operatorios de unións non soldadas

Procedementos operatorios de unións non soldadas Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice

Διαβάστε περισσότερα

FISICA 2º BACH. CURSO 99-00

FISICA 2º BACH. CURSO 99-00 26/11/99 1. Unha polea de 5 cm de radio leva enrolada unha corda da cal pende un corpo de 20 g, sendo o momento da inercia da polea 2.10-5 kg.m -2. Calcular: a) a aceleración do corpo; b) a enería cinética

Διαβάστε περισσότερα

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo. XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que

Διαβάστε περισσότερα

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =

Διαβάστε περισσότερα

Exercicios de Física 04. Óptica

Exercicios de Física 04. Óptica Exercicios de Física 04. Óptica Problemas 1. Unha lente converxente ten unha distancia focal de 50 cm. Calcula a posición do obxecto para que a imaxe sexa: a) real e tres veces maior que o obxecto, b)

Διαβάστε περισσότερα

1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular.

1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular. EXAMEN 1ª AVALIACION FISICA 2º BACHARELATO PROBLEMAS 1. Unha pelota de 2 kg de masa esbara polo tellado que forma un ángulo de 30º coa horizontal e, cando chega ó extremo, queda en libertade cunha velocidade

Διαβάστε περισσότερα

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración.

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración. FÍSICA MODERNA FÍSICA NUCLEAR. PROBLEMAS 1. Un detector de radioactividade mide unha velocidade de desintegración de 15 núcleos min -1. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a)

Διαβάστε περισσότερα

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo

Διαβάστε περισσότερα

ENERXÍA, TRABALLO E POTENCIA

ENERXÍA, TRABALLO E POTENCIA NRXÍA, TRABALLO POTNCIA NRXÍA Pódese definir enerxía coo a capacidade que ten un corpo para realizar transforacións nel eso ou noutros corpos. A unidade de enerxía no SI é o Joule (J) pero é frecuente

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

RADIACTIVIDADE. PROBLEMAS

RADIACTIVIDADE. PROBLEMAS RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de

Διαβάστε περισσότερα

1. Formato da proba [CS.PE.B03]

1. Formato da proba [CS.PE.B03] 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: tres cuestións. Problema 2: dúas cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

PAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B

PAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU Código: 5 SETEMBRO 01 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 XUÑO 2016 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2016 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 5 XUÑO 016 FÍSICA Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teórica o práctica). Problemas 6 puntos (1 cada apartado). No se valorará la simple anotación de un ítem cómo solución

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

ln x, d) y = (3x 5 5x 2 + 7) 8 x

ln x, d) y = (3x 5 5x 2 + 7) 8 x EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)

Διαβάστε περισσότερα

PAU. Código: 25 XUÑO 2015 FÍSICA OPCIÓN A OPCIÓN B

PAU. Código: 25 XUÑO 2015 FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 2015 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución ás

Διαβάστε περισσότερα

ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS

ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS Química P.A.U. ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS CUESTIÓNS NÚMEROS CUÁNTICOS. a) Indique o significado dos números cuánticos

Διαβάστε περισσότερα

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.

Διαβάστε περισσότερα

DINAMICA DE TRASLACION

DINAMICA DE TRASLACION DINAMICA DE TRASLACION 1.-CINEMATICA ELEMENTOS DO MOVEMENTO: Móvil, Sistema de Referencia e Traxectoria MAGNITUDES CINEMATICAS: - Vector de Posición: r= xi + yj + zk - Vector desplazamento: r= xi + yj

Διαβάστε περισσότερα

PROBLEMAS CUESTIONS 1.

PROBLEMAS CUESTIONS 1. PROBLMAS 1. Dende un cantil dispárase horizontalmente un proectil de 2 kg cunha velocidade inicial de 100 m/s. Se cando o proectil choca contra o mar a súa velocidade é de 108 m/s, calcular: a/ A enería

Διαβάστε περισσότερα

Código: 25 SETEMBRO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 SETEMBRO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 SETEMBRO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EXERCICIOS DE ÁLXEBRA. PAU GALICIA

EXERCICIOS DE ÁLXEBRA. PAU GALICIA Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M

Διαβάστε περισσότερα

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio.

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio. Tema 6 Ondas 6-1 Movemento ondulatorio. Clases de ondas 6- Ondas harmónicas. Ecuación de ondas unidimensional 6-3 Enerxía e intensidade das ondas harmónicas 6-4 Principio de Huygens: reflexión e refracción

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 1 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) Opción 1. Dada a matriz a) Calcula os valores do parámetro m para os

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEIS DE KEPLER 1. O peíodo de otación da Tea aedo do Sol é un ano e o aio da óbita é 1,5 10¹¹ m. Se Xúpite ten un peíodo de apoximadamente 12 anos, e se

Διαβάστε περισσότερα

A circunferencia e o círculo

A circunferencia e o círculo 10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA íica P.A.U. ÓPTICA ÓPTICA INTRODUCIÓN MÉTODO. En xeral: Debúxae un equema co raio. Compárae o reultado do cálculo co equema. 2. No problema de lente: Trázae un raio paralelo ao eixe óptico que ao chegar

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

Física cuántica. Relatividade especial

Física cuántica. Relatividade especial Tema 8 Física cuántica. Relatividade especial Evolución das ideas acerca da natureza da luz Experimento de Young (da dobre fenda Dualidade onda-corpúsculo Principio de indeterminación de Heisemberg Efecto

Διαβάστε περισσότερα