MATEMATIKA II. Dr Boban Marinković
|
|
- Άκανθα Βασιλόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 MATEMATIKA II VEŽBE Dr Boban Marinković 1
2 Neodredjeni integral dx = x + C, dx x = ln x + C, dx = arcsin x + C, 1 x 2 a x dx = ax ln a + C, cos x dx = sin x + C, dx x 2 a = 1 2 2a ln x a x + a + C, dx x2 + λ = ln x + x 2 + λ + C, ( dx x cos x = ln tg 2 + π ) + C, 4 dx sin 2 = ctg x + C. x x m dx = xm+1 m C, dx = arcctg x + C, x e x dx = e x + C, sin x dx = cos x + C, dx x 2 + a = 1 2 a arctg x a + C, dx a2 x = arcsin x 2 a + C, dx sin x = ln tg x 2 + C, dx = tg x + C, cos 2 x 1. Izračunati 2. Izračunati 2 x x 3 + 5x 1 x ( x x 3 1 dx. ) dx sin 2 x cos 2 x. tg x ctg x + C. + C. 3. Izračunati dx x + 1 x. 2
3 4. Izračunati 5. Izračunati 2 3 (x + 1) x C sin x cos x dx. (1 + 3 sin x) sin x cos x dx. + C. 2 cos x + C. 6. Izračunati dx (arccos x) 5 1 x Izračunati 8. Izračunati 1 4arccos 4 x + C. x x3 + 3x + 1 dx. 1 2 (x3 + 3x + 1) C. dx x ln x. ln ln x + C. 3
4 9. Izračunati arctg x dx. xarctg x 1 2 ln(1 + x2 ) + C. 1. Izračunati x cos x dx. x sin x + cos x + C. 11. Izračunati x 3 ln x dx. 1 4 x4 ln x 1 16 x4 + C. 12. Izračunati (x 2 2x + 5)e x dx. e x (x 2 + 5) + C. 13. Izračunati 15x 2 4x 81 (x 3)(x + 4)(x 1) dx. ln (x 3) 3 (x + 4) 5 (x 1) 7 + C. 14. Izračunati x x dx. 1 3 ln x ln(x2 x + 1) arctg 2x C. 4
5 15. Izračunati x (x 1) 3 (x + 3) dx. 16. Izračunati 1 4(x 1) 3 2 8(x 1) ln x 1 x C. dx 5 + sin x + 3 cos x. 2 ( ) 1 + 2tg x 2 arctg + C Izračunati dx x2 + 2x + 5. ln x x 2 + 2x C. 18. Izračunati dx 3x2 + 4x arcsin(3x 2) + C. 5
6 Njutn-Lajbnicova formula: Odredjeni integral b a f(x) dx = F (x) b a = F (b) F (a), gde je F (x) primitivna funkcija funkcije f(x). Površina krivolinijskog trapeza, ograničenog krivom y = f(x), f(x), pravama x = a i x = b i odsečkom [a, b], računa se po formuli S = b a f(x) dx. Dužina luka krive y = f(x) na intervalu [a, b] računa se po formuli L = b a 1 + y 2 dx. Zapremina tela koje nastaje rotacijom krivolinijskog trapeza, ograničenog krivom y = f(x), f(x), pravama x = a i x = b i odsečkom [a, b], oko x ose, računa se po formuli b V = π y 2 dx. a Površina tela koje nastaje rotacijom krive y = f(x), x [a, b], oko x ose, računa se po formuli b S = 2π y 1 + y 2 dx. a 1. Izračunati Izračunati 1 3. π 4 π 6 e 1 dx cos 2 x. ln 2 x x dx. 6
7 3. Izračunati 1 xe x dx. e 2 e. 4. Naći površinu figure ograničene parabolom y = 4x x 2 i osom O x. P = Naći površinu figure ograničene parabolom y = x 2 i pravom x+y 2 =. P = Naći dužinu luka krive y 2 = x 3 od x = do x = 1. ( L = 8 13 ) Naći dužinu luka krive y = ln sin x od x = π 3 do x = π 2. L = 1 ln Naći zapreminu tela koje nastaje rotacijom oko x ose figure ograničene krivom y 2 = (x 1) 3 i pravom x = 2. V = π 4. 7
8 Funkcije dve promenljive Neka je M(x, y ) stacionarna tačka funkcije z = f(x, y). Označimo A = 2 f(x, y ), B = 2 f(x, y ), C = 2 f(x, y ). x 2 x y y 2 Neka je = AC B 2. Tada važi: 1. > i A < (ili C < ) funkcija ima maksimum. 2. > i A > (ili C > ) funkcija ima minimum. 3. < funkcija nema ekstremum. 4. = potrebno je dodatno ispitivanje. 1. Naći parcijalne izvode funkcije z = e x2 +y 2. z x +y2 = 2xex2, z y +y2 = 2yex2. 2. Naći druge parcijalne izvode funkcije z = y ln x. 2 z x 2 = y x 2, 2 z y 2 =, 2 z x y = 1 x. 3. Naći ekstremume funkcije z = x 2 + xy + y 2 3x 6y. Tačka M(, 3) je tačka minimuma. 4. Naći ekstremume funkcije z = x 3 + y 3 15xy. Tačka M(5, 5) je tačka minimuma. 8
9 Diferencijalna jednačina koja razdvaja promenljive Jednačina oblika Ako je g(y) tada Jednačina oblika y = f(x)g(y). dy g(y) = f(x)dx + C. y = f(ax + by + c) se smenom z = ax + by + c svodi na prethodnu. 1. Naći rešenje diferencijalne jednačine koje zadovoljava uslov y(1) = 1. Opšte rešenje je a partikularno se dobija za C = π 4. (1 + x 2 ) dy + y dx = ln y = arctg x + C 2. Naći rešenje diferencijalne jednačine koje zadovoljava uslov y() = 1. y cos x = y ln y Opšte rešenje je ( 1 2 ln2 y = ln x tg 2 + π ) + C 4 a partikularno se dobija za C =. 3. Naći opšte rešenje diferencijalne jednačine y = x 2 2xy + y Smena x y = u. Opšte rešenje je x + arctg(x y) = C. 9
10 4. Naći opšte rešenje diferencijalne jednačine y = 2x + 2y + 5 x + y + 1. Smena x + y + 1 = u. Opšte rešenje je y 2x + 1 ln x + y + 2 = C. 5. Naći opšte rešenje diferencijalne jednačine y = 3x 2y + 1. Smena 3x 2y + 1 = u. Opšte rešenje je 4y 6x + 1 = Ce 2x. 1
11 Homogena diferencijalna jednačina Jednačina oblika y = f ( y x). Smenom y = ux svodi se na jednačinu koja razdvaja promenljive. Jednačina ( ) y a1 x + b 1 y + c 1 = f, a 2 x + b 2 y + c 2 pri čemu je a 1 a 2 b 1 b2, se rešava uvodjenjem smene x = X + α, y = Y + β. Koeficijente α i β odredjujemo tako da slobodan član bude jednak nuli. Tada se jednačina svodi na homogenu. 1. Naći opšte rešenje diferencijalne jednačine Opšte rešenje je (y 2 + xy) dx x 2 dy =. ln x + x y = C. 2. Naći rešenje diferencijalne jednačine y = xy2 yx 2 x 3 koje zadovoljava uslov y( 1) = 1. Opšte rešenje je y 2x y a partikularno se dobija za C = 3. = Cx 2 3. Naći opšte rešenje diferencijalne jednačine Opšte rešenje je y = 4y 2x 6 x + y 3. (y x 1) 2 (y 2x) 3 = C. 11
12 Linearna diferencijalna jednačina Jednačina oblika Njeno rešenje je dato sa y + P (x)y = Q(x). [ y = e P (x)dx C + ] Q(x)e P (x)dx dx. 1. Naći opšte rešenje diferencijalne jednačine Opšte rešenje je y + y cos x = e sin x. y = e sin x [C + x]. 2. Naći opšte rešenje diferencijalne jednačine y + y ctg x = x 2. Uz dve parcijalne integracije dobija se opšte rešenje y = C sin x x2 ctg x + 2x + 2 ctg x. 3. Naći opšte rešenje diferencijalne jednačine y = y y 2 + x. Jednačina se transformiše u linearnu diferencijalnu jednačinu x 1 y x = y, čijim rešavanjem se dobija opšte rešenje x = y 2 + Cy. 12
13 Bernulijeva diferencijalna jednačina Jednačina oblika y + P (x)y = Q(x)y α. Smenom u = y 1 α svodi se na linearnu diferencijalnu jednačinu u + (1 α)p (x)u = (1 α)q(x). 1. Naći opšte rešenje diferencijalne jednačine y 4 x y = x y. Posle svodjenja na linearnu jednačinu u 2xu = x 2, dobijamo opšte rešenje y = 1 4 x4 ln 2 xc. 2. Naći opšte rešenje diferencijalne jednačine 3y y 2y y tg x = 2x 2. Posle svodjenja na linearnu jednačinu u tg xu = 3x 2, dobijamo opšte rešenje y = ( ) C 2 cos x + 2x + 3 (x2 2) tg x. 3. Naći opšte rešenje diferencijalne jednačine y xy 2 3xy =. Posle svodjenja na linearnu jednačinu u + 3xu = x, dobijamo opšte rešenje 3 y = Ce 3 2 x
14 Jednačina totalnog diferencijala Jednačina oblika uz uslov da je P (x, y) dx + Q(x, y) dy =, P y Q (x, y) = (x, y). x Opšte rešenje je oblika u(x, y) = C gde je [ u = P (x, y)dx + Q(x, y) ] P (x, y)dx dy. y 1. Naći opšte rešenje diferencijalne jednačine (e x + y + sin y) dx + (e y + x + x cos y) dy =. Opšte rešenje je e x + xy + x sin y + e y = C. 2. Naći opšte rešenje diferencijalne jednačine Opšte rešenje je y x dx + (3y2 + ln x) dy =. y ln x + y 3 = C. 3. Naći opšte rešenje diferencijalne jednačine Opšte rešenje je (x + y 1) dx + (e y + x) dy =. e y + x2 2 + xy x = C. 14
15 Integracioni množitelj I λ(u), u = u(x, y) : II λ(x) : III λ(y) : dλ λ = p q y x q u p u x y du 1 λ(x) = e q ( p y q x )dx 1 λ(y) = e p ( q x p y )dy 1. Naći opšte rešenje diferencijalne jednačine (x 4 + y 4 ) dx xy 3 dy = ako se zna da ona ima integracioni množitelj u obliku funkcije od x. Integracioni množitelj je µ(x) = 1 x 5 y = 4 4x 4 ln x 4Cx Naći opšte rešenje diferencijalne jednačine (2xy 2 y) dx + (y 2 + x + y) dy = a opšte rešenje je ako se zna da ona ima integracioni množitelj u obliku funkcije od y. Integracioni množitelj je µ(y) = 1 y 2 a opšte rešenje je x 2 x y + y + ln y = C. 3. Naći opšte rešenje diferencijalne jednačine (x y) dx + (x + y) dy = ako se zna da ona ima integracioni množitelj u obliku funkcije od x 2 +y 2. Integracioni množitelj je µ(x 2 + y 2 ) = 1 x 2 +y 2 ln x 2 + y 2 arctg x y = C. a opšte rešenje je 15
16 I Neke diferencijalne jednačine višeg reda y (n) = f(x). Rešava se n puta integracijom. II F (x, y, y ) =. Uvede se smena y = p pa se dobije jednačina prvog reda. III F (y, y, y ) =. Uvede se smena y = p(y), (y = p p), koja snižava red jednačine. 1. Naći opšte rešenje diferencijalne jednačine Opšte rešenje je y = xe x. y = (x + 2)e x + C 1 x + C Naći ono rešenje diferencijalne jednačine y IV = cos 2 x, koje zadovoljava uslove y() = 1 32, y () =, y () = 1 8, y () =. Partikularno rešenje je y = 1 48 x x2 + 1 cos 2x Naći opšte rešenje diferencijalne jednačine Opšte rešenje je xy = y ln y x. y = 1 C 1 xe 1+C 1x 1 C 2 1 e 1+C 1x + C 2. 16
17 4. Naći ono rešenje diferencijalne jednačine y y x 1 = x(x 1) koje zadovoljlava uslove y(2) = 1, y (2) = 1. Partikularno rešenje je y = 3x4 4x 3 36x x Naći opšte rešenje diferencijalne jednačine Opšte rešenje je 1 + (y ) 2 = yy. 1 ln(c 1 y + C C 1y 2 2 1) = ±(x + C 2 ) Naći ono rešenje diferencijalne jednačine yy (y ) 2 = koje zadovoljlava uslove y() = 1, y () = 2. Partikularno rešenje je y = e 2x. 17
18 Homogena diferencijalna jednačina n-tog reda sa konstantnim koeficijentima Jednačina oblika y (n) + a 1 y (n 1) a n y =. Opšte rešenje se formira u zavisnosti od korena karakteristične jednačine r n + a 1 a 1 r (n 1) a n =. 1) Svakom realnom korenu reda 1 u opštem rešenju odgovara sabirak Ce kx. 2) Svakom realnom korenu reda m u opštem rešenju odgovara sabirak (C 1 + C 2 x C m 1 x m 1 )e kx. 3) Svakom kompleksnom korenu α ± β i, reda 1, u opštem rešenju odgovara sabirak e αx (C 1 cos βx + C 2 sin βx). 4) Svakom kompleksnom korenu α ± β i, reda m, u opštem rešenju odgovara sabirak e αx [(C 1 + C 2 x C m 1 x m 1 ) cos βx + (C 1 + C 2x C m 1x m 1 ) sin βx]. 1. Naći opšte rešenje diferencijalne jednačine y + 3y + 2y =. λ 1 = 1, λ 2 = 2, y = C 1 e 2x + C 2 e x. 2. Naći opšte rešenje diferencijalne jednačine y 8y + 16y =. λ 1 = λ 2 = 4, y = C 1 e 4x + C 2 xe 4x. 3. Naći opšte rešenje diferencijalne jednačine y (4) 13y + 36y =. λ 1 = 3 λ 2 = 3, λ 3 = 2, λ 4 = 2, y = C 1 e 3x + C 2 e 3x + C 3 e 2x + C 4 e 2x. 18
19 4. Naći opšte rešenje diferencijalne jednačine y + 8y =. λ 1,2 = 1 ± i 3, λ 3 = 2, y = C 1 e 2x + C 2 e x cos 3x + C 3 e x sin 3x. 19
20 Nehomogena diferencijalna jednačina n-tog reda sa konstantnim koeficijentima Jednačina oblika y (n) + a 1 y (n 1) a n y = f(x). f(x) Oblik e αx P n(x), α n.k.k.j. y p = e αx Q n(x) e αx P n(x), α j.k.k.j. reda s y p = x s e αx Q n(x), e αx [P n(x) cos βx + Q m(x) sin βx], α ± βi n.k.k.j. y p = e αx [R k (x) cos βx + S k (x) sin βx] e αx [P n(x) cos βx + Q m(x) sin βx], α ± βi j.k.k.j. reda s y p = x s e αx [R k (x) cos βx + S k (x) sin βx] gde je k = max (m, n). 1. Naći opšte rešenje diferencijalne jednačine y 7y = 5xe x. Opšte rešenje je ( y = C 1 + C 2 e 7x + 2. Naći opšte rešenje diferencijalne jednačine 5 6 x y + 6y + 9y = (x 2)xe 3x. ) e x. Opšte rešenje je y = (C 1 + C 2 x)e 3x + ( 1 6 x 1 ) x 2 e 3x. 3. Naći opšte rešenje diferencijalne jednačine y y + y y = 2e x. Opšte rešenje je C 1 e x + C 2 cos x + C 3 sin x + xe x. 2
21 4. Naći opšte rešenje diferencijalne jednačine y + y = ( x + 3 ) e x 2x. 2 Opšte rešenje je y = C 1 + C 2 e x xex x 2 + 2x. 5. Naći opšte rešenje diferencijalne jednačine Opšte rešenje je y + 3y + 2y = (2x + 3) sin x + cos x. y = C 1 e x + C 2 e 2x + 6. Naći opšte rešenje diferencijalne jednačine Opšte rešenje je ( 1 5 x + 21 ) ( 3 sin x ) x + 3 cos x. y + y + 2y 4y = 21e x 26 sin x. y = C 1 e x + C 2 e x + cos 3x + C 3 e x sin 3x + 3xe x + cos x + 5 sin x. 21
22 Sistemi diferencijalnih jednačina Sisteme rešavamo svodjenjem na diferencijalnu jednačinu višeg reda. 1. Naći opšte rešenje sistema difrencijalnih jednačina y = z 5 cos x, z = 2y + z. Diferenciramo drugu pa y ubacimo u prvu. Opšte rešenje sistema je z(x) = C 1 e x +C 2 e 2x +3 cos x+sin x, y(x) = C 1 e x + C 2 2 e2x 2 sin x cos x. 2. Naći opšte rešenje sistema difrencijalnih jednačina d 2 y dx + dz 2 dx + y = ex, dy dx + d2 z dx = 1. 2 Diferenciramo prvu pa d2 z ubacimo u drugu. Opšte rešenje dx 2 sistema je y(x) = e x x3 6 +C 1x 2 +C 2 x+c 3, z(x) = e x + x4 24 C x (1 C 2) x2 2 (2C 1+C 3 )x+c Naći opšte rešenje sistema difrencijalnih jednačina x + y + 3x = e t, y 4x + 3y = sin(2t). Diferenciramo prvu pa izrazimo y iz druge, pa ponovo diferenciramo i dobijamo jednačinu po funkciji x(t), čije je rešenje x(t) = C 1 cos t + C 2 sin t + C 3 cos(3t) + C 4 sin(3t) + e t cos(2t). 4. Naći opšte rešenje sistema difrencijalnih jednačina x = x y + z, y = x + y z, z = 2x y. Diferenciramo prvu pa z i z ubacimo u drugu i treću. Zatim izrazimo y preko x i x i još jednom diferenciramo i dobijamo jednačinu po x(t).opšte rešenje sistema je x(t) = C 1 e t +C 2 e t +C 3 e 2t, y(t) = C 1 e t 3C 2 e t, z(t) = C 1 e t 5C 2 e t +C 3 e 2t. 22
23 Dvostruki integrali D = {(x, y) a x b, y 1 (x) y y 2 (x)} D f(x, y) dxdydz = [ b y2 (x) a y 1 (x) f(x, y) dy ] dx = b a y2 (x) dx f(x, y) dy. y 1 (x) Zapremina tela se računa po formuli V = D f(x, y) dxdy, gde je f(x, y) funkcija kojom je definisana površ S čija je projekcija na ravan Oxy oblast D i koje, zajedno sa cilindričnom površi sa strane, ograničavaju telo. 1. Izračunati D x y 2 dxdy, gde je D = {(x, y), x 2, y 1}. 2 1 x 2 dx 1 + y dy = 2π Izračunati (x + 2y) dxdy, D gde je D unutršnjost trougla sa temenima u tačkama A(, ), B(1, 2) i C(3, ). I 1 + I 2 = 8 gde su I 1 = 1 2x 3 3 x dx (x + 2y) dy, I 2 = dx (x + 2y) dy. 1 23
24 3. Izračunati x 2 y 2 1 x 3 y 3 dxdy, D gde je D oblast definisana relacijama x, y, x 2 + y x 2 1 x 3 dx y 2 1 x 3 y 3 dy = Izračunati (xy 2x + 3y) dxdy, D gde je D oblast ograničena krivim y = x i y = x 3. 1 x dx (xy 2x + 3y) dy = 43 x Izračunati (2x 3y) dxdy, D gde je D unutrašnjost kruga x 2 + y 2 = 16 u I kvadrantu. Polarne koordinate: 4 x = ρ cos φ, y = ρ sin φ, J = ρ, π 2 dρ (2ρ cos φ 3ρ sin φ)ρ dφ = Izračunati (2x 3y + 4) dxdy, gde je D unutrašnjost elipse x2 + y 2 = x = 2ρ cos φ, y = 3ρ sin φ, J = 6ρ, 1 D 2π dρ (2ρ cos φ 3ρ sin φ + 4)ρ dφ = 24π. 24
25 7. Izračunati (x 2 + y 2 ) 2 dxdy, gde je D unutrašnjost kruga x 2 + y 2 = 2y. D x = ρ cos φ, y = 1 + ρ sin φ, J = ρ, 1 2π dρ (ρ 2 + 2ρ sin φ + 1) 2 ρ dφ = 1π Izračunati zapreminu tela ograničenog eliptičkim cilindrom x2 4 + y2 = 1 i ravnima z = 12 3x 4y, z = 1. x = 2ρ cos φ, y = ρ sin φ, J = 2ρ, 1 2π dρ (11 3ρ cos φ 4ρ sin φ)2ρ dφ = 22π. 9. Izračunati zapreminu tela ograničenog površima (x 1) 2 + y 2 = z i 2x + z = 2. Eliminacijom z iz jednačina površi dobijamo x 2 + y 2 = 1. Uvodjenjem polarnih koordinata dobijamo da je 2π 1 V = dϕ ρ(1 ρ 2 )dρ = π Izračunati zapreminu tela ograničenog kružnim cilindrom x 2 + y 2 = 2x i ravnima z = x, z = 3x. x = ρ cos φ + 1, y = ρ sin φ, J = ρ, 1 2π V = dρ (2 + 2ρ cos φ)ρ dρ = 2π. 11. Izračunati zapreminu tela koje ograničavaju paraboloid z = x 2 + y 2 i ravan z = x + y. Eliminacijom z i uvodjenjem smena x = X i y = Y dobijamo, uz pomoć polarnih koordinata, da je V = 2 2 2π dρ ( 1 2 ρ2 )ρ dρ = π 8. 25
26 Trostruki integrali V = {(x, y, z) a x b, y 1 (x) y y 2 (x), z 1 (x, y) z z 2 (x, y)} [ b [ y2 (x) ] ] z2 (x,y) f(x, y, z) dxdydz = f(x, y, z) dz dy dx. a y 1 (x) z 1 (x,y) V Zapremina tela G se računa po formuli V = G dxdydz. 1. Izračunati V x dxdydz, gde je V oblast u prvom kvadrantu ograničena sa ravni x 2 + y 2 + z = dx 2 x+3 2. Izračunati V 1 x 2 dy y 3 x dz = xy dxdydz, gde je V oblast ograničena hiperboloičnim paraboloidom z = xy i ravnima x + y = 1, z = (z ). 1 1 x xy dx dy xy dz = Izračunati (x + y 2z + 1) dxdydz, V gde je V deo lopte x 2 + y 2 + z 2 4 u prvom oktantu. 26
27 Sferne koordinate: x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ, J = ρ 2 sin φ, 2 π 2 dρ dφ π 2 f(ρ, φ)ρ 2 sin φ dθ = 4π Izračunati (x 2 + y 2 + z 2 ) dxdydz, V gde je V oblast koju ograničava elipsoid x 2 + y 2 + z2 4 = 1. x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = 2ρ cos φ, J = 2ρ 2 sin φ, 1 5. Izračunati π 2π dρ dφ f(ρ, φ)ρ 2 sin φ dθ = 16π 3. V x 2 + y 2 dxdydz, gde je V oblast ograničena konusom x 2 + y 2 = z 2 i sa ravni z = 1. Cilindrične koordinate: x = ρ cos φ, y = ρ sin φ, z = z, J = ρ, 1 dz 2π z dφ f(ρ, φ)ρ dρ = π Izračunati zapreminu tela koje ograničavaju paraboloidi z = x 2 + y 2, z = 2x 2 + 2y 2, cilindrična površ y = x 2 i ravan y = x. V = 1 x 2x 2 +2y 2 dx dy dz = 3 x 2 x 2 +y
28 Krivolinijski integrali prve vrste y = y(x), x [a, b] : l f(x, y) ds = b x = x(t), y = y(t), t [t, t 1 ] : l f(x, y) ds = a t1 t f(x, y(x)) 1 + (y (x)) 2 dx f(x(t), y(t)) (x (t)) 2 + (y (t)) 2 dt x = ρ cos φ, y = ρ sin φ, ρ = ρ(φ), φ [α, β] : l f(x, y) ds = β α f(ρ(φ) cos φ, ρ(φ) sin φ) (ρ(φ)) 2 + (ρ (φ)) 2 dφ 1. Izračunati l x y ds gde je l luk parabole y 2 = 2x izmedju tačaka (2, 2) i (8, 4). 1 6 ( ). 2. Izračunati (x 2 + y 3 ) ds l gde je l trougao sa temenima u tačkama A(1, ), B(, 1) i O(, ) = 7( 3. Izračunati 2+1). 12 l y 2 ds gde je l luk cikloide x = 2(t sin t), y = 2(1 cos t), t 2π. 2π 64 sin 5 t 248 dt =
29 4. Izračunati l x 2 + y 2 ds gde je l kriva zadata parametarskim jednačinama x = cos t + t sin t, y = sin t t cos t, t 2π. 2π t 1 + t 2 dt = Izračunati (x 2 + y 2 ) ds gde je l krug x 2 + y 2 = ax, (a > ). l [ (1 + 4π 2 ) ]. x = ρ cos φ, y = ρ sin φ, a 3 π 2 π 2 cos 2 φ dφ = πa
30 Krivolinijski integrali druge vrste y = y(x), x [a, b] : b P (x, y) dx + Q(x, y) dy = [P (x, y(x)) + Q(x, y(x))y (x)] dx a l x = x(t), y = y(t), t [t, t 1 ] : l P (x, y) dx + Q(x, y) dy = b a [P (x(t), y(t))x (t) + Q(x(t), y(t))y (t)] dt 1. Date su tačke A(3, 6), B(3, ) i C(, 6). Izračunati (8x + 4y + 2) dx + (8y + 2) dy gde je l: a) Odsečak OA. b) Izlomljena linijia OBA. c) Izlomljena linijia OCA. l d) Parabola, simetrična u odnosu na osu Oy, koja prolazi kroz O i A. a) 234; b) 198; c) 27; d) y = 2 3 x2, Izračunati l y dx + x dy 1 + x gde je l luk krive y = 2 x x u prvom kvadrantu. 2I 1 I 2 + I 3 = 4 4 arctg 2 + ln 5 gde su: 3 4 x I 1 = 1 + x dx = 4 2 arctg 2, (smena x = t), I 2 = I 3 = 4 4 x dx = 4 ln 5, 1 + x ( x x) dx =
31 3. Izračunati (2a y) dx (a y) dy l gde je l prvi svod cikloide x = a(t sin t), y = a(1 cos t), t 2π. 2π a 2 (sin 2 t sin t cos t) dt = πa 2. 31
32 Grinova formula l P (x, y) dx + Q(x, y) dy = D ( ) Q P (x, y) (x, y) dxdy x y 1. Izračunati (3xy 2x 2 ) dx + (4xy 2y 2 ) dy l gde je l zatvorena kriva koja se sastoji od delova krivih y = x 3 i y = 3 x. Rešenje. 2. Izračunati 1 3 x dx (4y 3x) dy = 8 x (x 2 3xy) dx + (xy + 2y 3 ) dy l gde je l elipsa (x 1) 2 (y 2)2 + = Rešenje. x = 1 + ρ cos φ, y = 2 + 4ρ sin φ, J = 4ρ, 3. Izračunati 2π 4 1 dφ (5 + 4ρ sin φ + 3ρ cos φ)ρ dρ = 2π. (x 2 + 2y 2 y) dx + (2 + x x 2 ) dy gde je l elipsa x2 4 + y2 9 = l
33 Rešenje. x = 2ρ cos φ, y = 3ρ sin φ, J = 6ρ, 4. Izračunati 2π 6 gde je l kriva x 2 + y 2 = 3x. 1 dφ (2 4ρ cos φ 12ρ sin φ)ρ dρ = 12π. (xy + x + y) dx + (xy + x y) dy l Rešenje. x = 3 + ρ cos φ, y = ρ sin φ, J = ρ, 2 2π 3 2 dφ (ρ sin φ 3 ρ cos φ)ρ dρ = 27π Izračunati l 2(x 2 + y 2 ) dx + (x + y) 2 dy gde je l trougao sa temenima u tačkama A(1, 1), B(2, 2) i C(1, 3). Rešenje. 6. Izračunati 2 4 x 2 dx (x y) dy = 4 1 x 3. (2x 3y) dx + (x 2 xy) dy l gde je l deo krive y = 4 x u prvom kvadrantu. Rešenje. 4 4 x dx (2x y + 3) dy 16 =
34 Brojni redovi Teorema 1. Neka red a n konvergira i neka je njegova suma jednaka S. Tada red αa n konvergira i njegova suma je jednaka αs. Teorema 2. Neka redovi a n i b n konvergiraju i neka su njihove sume jednake S 1 i S 2. Tada red (a n + b n ) konvergira i njegova suma je jednaka S 1 + S 2. Teorema 3. Neka red a n konvergira. Tada je lim n a n =. Teorema 4. Neka su a n i b n redovi sa pozitivnim članovima i neka ( n )( n)n n a n b n. Tada: 1) Ako red b n konvergira tada i red a n konvergira. 2) Ako red a n divergira tada i red b n divergira. Teorema 5. Neka su a n i b n redovi sa pozitivnim članovima i neka je a n lim = c, (c, ± ). n b n Tada: 1) Red a n konvergira ako i samo ako red b n konvergira. 2) Red a n divergira ako i samo ako red b n divergira. Teorema 6 (Dalamberov kriterijum). Neka je a n red sa pozitivnim članovima i neka je a n+1 lim = l. n a n Tada: 1) Ako je l > 1 tada red a n divergira. 2) Ako je l < 1 tada red a n konvergira. 3) Ako je l = 1 tada se za red a n ne može tvrditi ni da konvergira ni da divergira. 34
35 Teorema 7 (Košijev kriterijum). Neka je a n red sa pozitivnim članovima i neka je n an = l. lim n Tada: 1) Ako je l > 1 tada red a n divergira. 2) Ako je l < 1 tada red a n konvergira. 3) Ako je l = 1 tada se za red a n ne može tvrditi ni da konvergira ni da divergira. Teorema 8 (Integralni kriterijum). Neka je a n red sa pozitivnim članovima za koji postoji pozitivna, neprekidna i monotono-opadajuća funkcija, definisana na intervalu [1, ), takva da je f(n) = a n, n = 1, 2,.... Tada: 1) Red a n konvergira ako i samo ako integral 1 f(x) dx konvergira. 2) Red a n divergira ako i samo ako integral 1 f(x) dx divergira. 1. Naći lim n S n za sledeće redove i ispitati konvergenciju: a) n b) n (n + 1) a) S = ; b) S = Naći lim n a n za sledeće redove: a) n + 1 2n + 1. b) c) n + 2 ln(n + 1). n 2 n
36 a) lim n a n = 1 2 ; b) lim n a n = ; c) lim n a n =. 3. Ispitati konvergenciju sledećih redova: a) 2 + sin n. n b) c) arctg n + 1 n 2. 5 n n. Primenjujemo teoremu 4: a) 2+sin n 1 pa red divergira. b) n n arctg n+1 π n pa red konvergira. c) 5n +1 5n pa red divergira. n 2 2 n 2 n 4. Ispitati konvergenciju sledećih redova: a) n + 2 n 2 + n + 1. b) c) n n + 2 n6 + 2n 2. n + 3 n n + 3 n 5. Primenjujemo teoremu 5: a) Podelimo opšti član sa 1 pa n dobijamo da red divergira. b) Podelimo opšti član sa 1 pa dobijamo da red konvergira. c) Podelimo opšti član sa 1 divergira. n 7 6 n 5 2 pa dobijamo da red 36
37 5. Ispitati konvergenciju sledećih redova: a) n 5 3 n+1. b) c) d) n n n!. 3 n n!. n 3 3 n. a Primenjujemo teoremu 6: a) lim n+1 n a n = 1 pa red konvergira. b) lim n+1 a 3 a n a n = e pa red divergira. c) lim n+1 n a n = pa red a konvergira. d) lim n+1 n a n = 1 pa red konvergira Ispitati konvergenciju sledećih redova: a) ( ) n + 2 3n+1. 2n + 1 b) c) ( ) n 1 n(n 1). n + 1 ( n 1 1 ) n 2. n Primenjujemo teoremu 7: a) lim n n a n = 1 pa red konvergira. b) lim n n a n = 1 pa red konvergira. c) lim e 2 n n a n = 1 pa e 8 red konvergira. 37
38 7. Ispitati konvergenciju sledećih redova: a) n=2 1 n ln n. b) c) n=2 1 n ln n. 1 (n + 1) ln 2 (n + 1). Primenjujemo teoremu 8: a) 2 f(x) dx = pa red divergira. b) 2 f(x) dx = pa red divergira. c) 1 f(x) dx = 1 pa red ln 2 konvergira. 38
39 Alternativni redovi Teorema 1. Neka je: 1) a n > a n+1, 2) lim n a n =. Tada red ( 1) n a n konvergira. Teorema 2. Ako red a n konvergira tada i red ( 1) n a n konvergira. 1. Ispitati konvergenciju reda: ( 1) n 1 2 n 1. Lako je videti da uslovi 1) i 2) iz teoreme 1 važe i alternativni red konvergira. Pored toga red 1 2 divergira, jer je n n 1 > 1 2 n, pa primenjujemo teoremu 4. Prema tome red ( 1) n 1 2 n 1 uslovno konvergira. 2. Ispitati konvergenciju reda: ( 1) n+1 1 2n ln n. Uslovi 1) i 2) iz teoreme 1 važe pa alternativni red konvergira. Primenimo teoremu 5 za ispitivanje apsolutne konvergencije. Kada podelimo a n sa 1, dobijamo da red ne konvergira apsolutno pa imamo n da alternativni red uslovno konvergira. 39
40 Stepeni redovi Oblast konvergencije stepenog reda je interval ( R, R) gde je R = lim a n n a n+1 ili 1 R = lim n. an 1. Naći poluprečnik konvergencije sledećih stepenih redova i ispitati konvergenciju u krajevima intervala. a) n! (x 3) n 1 2 n+1. b) c) d) n=2 3 n 1 (x + 1) n n n. (x 2) n+1 3 n (n + 2). (x + 5) n 3 n+1 n ln 3 n. a) R =. b) R =. c) R = 3. Za x = 1 red konvergira po teoremi 1 (za alternativne redove). Za x = 5 red divergira po teoremi 5 (podelimo a n sa 1 ). d) R = 3. Za x = 8 red apsolutno konvergira n po teoremi 8 pa zaključujemo da konvergira. Za x = 2 red konvergira po teoremi 8. 4
41 Tejlorov i Maklorenov red Tejlorova formula: f(x) = f(x ) + f (x ) 1! Maklorenova formula: (x x ) + f (x ) 2! f(x) = f() + f () 1! x + f () 2! Maklorenov red nekih funkcija: x (, + ): x (, + ): (x x ) f (n) (x ) (x x ) n +... n! x f (n) () x n +... n! e x = 1 + x 1! + x2 2! xn n! +... = n= x n n!. x 2n 1 sin x = x x3 3! + x5 5! x 2n 1 ( 1)n 1 (2n 1)! +... = ( 1) n 1 (2n 1)!. x (, + ): x ( 1, 1]: cos x = 1 x2 2! + x4 x2n ( 1)n 4! (2n)! +... = ( 1) n x2n (2n)!. ln(1 + x) = x x2 2 + x3 xn ( 1)n 1 3 n= n +... = n 1 xn ( 1) n. 41
42 x [ 1, 1] za m > ; x ( 1, 1] za 1 < m < ; x ( 1, 1) za m 1: (1 + x) m = m(m 1) 1 + mx + x 2 m(m 1)... (m n + 1) x n +... = 2! n! m(m 1)... (m n + 1) 1 + x n. n! 1. Funkciju e x2 razviti u Maklorenov red. e x2 = 1 x2 1! + x4 2! x6 3!. 2. Funkcije a) f(x) = arctg x; b) f(x) = 1 razviti u Maklorenov red. (1 x) 2 Naci im izvode, razviti ih u red a zatim integraliti član po član. a) f(x) = n= ( 1) n x2n+1 b)f(x) = (2n+1)! nx n Naći 2. lim x 2e x 2 2x x 2. x sin x 4. Naći Naći sin x arctg x lim. x x 3 3 arctg x 3 tg x + 2x 3 lim. x x 5 2; tg x = x + x x
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012
MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:
Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
INTEGRALI Zadaci sa kolokvijuma
INTEGRALI Zadaci sa kolokvijuma ragan ori Sadrжaj Neodređeni integral Određeni integral 6 Nesvojstveni integral 9 4 vojni integral 5 Redovi 5 Studentima generacije / (grupe A9, A i A) Ovo je jox jedna
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa A. x 2, g : x. 1 (x 2 + y 2 dx dy. QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa B. ln x (x 1) 3/2.
1. Izraqunati QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, 1995. x arctan x 1 + x dx. Grupa A. Izraqunati povrxinu koju ograniqavaju pozitivan deo x - ose i grafici funkcija 3. Ako je oblast ograniqena krivama
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.
Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
MATEMATIKA 3. Vera & Rade
MATEMATIKA 3 Vera & Rade 1. Diferencijalne jednačine prvog reda - osnovni pojmovi Oznake: x - nezavisno promenljiva y - nepoznata funkcija, y = y(x) y = dy dx - izvod funkcije Opšti oblik diferencijalne
DIFERENCIJALNE JEDNAČINE
I G L A V A DIFERENCIJALNE JEDNAČINE Pri razmatranju i rešavanju raznih problema iz mehanike, fizike, hemije, geometrije i drugih naučnih disciplina i njihovih primena, nailazi se na jednačine u kojima
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.
4 Izvodi i diferencijali
4 Izvodi i diferencijali 8 4 Izvodi i diferencijali Neka je funkcija f() definisana u intervalu (a, b), i neka je 0 0 + (a, b). Tada se izraz (a, b) i f( 0 + ) f( 0 ) () zove srednja brzina promene funkcije
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
8 Funkcije više promenljivih
8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t)
Izvodi Definicija. Neka je funkcija f definisana i neprekidna u okolini tačke a. Prvi izvod funkcije f u tački a je Prvi izvod funkcije f u tački : f f fa a lim. a a f lim 0 Izvodi višeg reda funkcije
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
dr Lidija Stefanović INTEGRALI: KRIVOLINIJSKI, DVOJNI, TROJNI, POVRŠINSKI ZA STUDENTE TEHNIČKIH FAKULTETA; II DEO SKC Niš, 2009.
dr idija tefanović INTEGRAI: KRIVOINIJKI, VOJNI, TROJNI, POVRŠINKI ZA TUENTE TEHNIČKIH FAKUTETA; II EO KC Niš, 9. dr idija tefanović INTEGRAI: KRIVOINIJKI, VOJNI, TROJNI, POVRŠINKI ZA TUENTE TEHNIČKIH
1 / 79 MATEMATIČKA ANALIZA II REDOVI
/ 79 MATEMATIČKA ANALIZA II REDOVI 6.. Definicija reda Promatrajmo niz Definicija reda ( ) n 2 :, 2 2 3 2 4 2,... Postupno zbrajajmo elemente niza: = + 2 2 = 5 4 + 2 2 + 3 2 = 49 36 + 2 2 + 3 2 + 4 2 =
Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a
Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj
Integrali Materijali za nastavu iz Matematike 1
Integrali Materijali za nastavu iz Matematike Kristina Krulić Himmelreich i Ksenija Smoljak 202/3 / 44 Definicija primitivne funkcije i neodredenog integrala Funkcija F je primitivna funkcija (antiderivacija)
Vežbe iz diferencijalnih jednačina
Vežbe iz diferencijalnih jednačina Vežbe. Familije krivih. Familija krivih je zadata funkcijom f(x, y, c, c 2,..., c n ) = 0. Naći diferencijalnu jednačinu koja opisuje tu familiju. Rešenje: Diferenciranjem
Analitička geometrija
1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i
Parcijalne diferencijalne jednačine prvog reda
I. Vojnović Glava 1 Parcijalne diferencijalne jednačine prvog reda 1.1 Oznake Za funkciju u : R n R parcijalni izvod po x i označavamo sa u xi, odnosno u xi = u/ x i, pri čemu je x = (x 1,..., x n ). Radi
dr L. Stefanović, mr M. Matejić, dr S. Marinković DIFERENCIJALNE ZA STUDENTE TEHNIČKIH FAKULTETA SKC Niš, 2006.
dr L. Stefanović, mr M. Matejić, dr S. Marinković DIFERENCIJALNE JEDNAČINE ZA STUDENTE TEHNIČKIH FAKULTETA SKC Niš, 2006. dr Lidija Stefanović, mr Marjan Matejić, dr Slad ana Marinković DIFERENCIJALNE
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
TEORIJA REDOVA. n u k (n N) (2) k=1. u k. lim S n = S, kažemo da zbir (suma) reda. k=1 S = k=1
TEORIJA REDOVA NUMERIČKI REDOVI. OSNOVNI POJMOVI DEFINICIJA. Neka je {u n } n N realan niz. Izraz oblika k= u k = u + u 2 + + u n + () naziva se beskonačan red, ili kraće red. Broj u n naziva se opšti
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE
Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih
TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)
TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:
Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave
uniformno konvergira na [ 2, 2]?
Građevinski fakultet Univerziteta u Beogradu 27.6.2015. ZAVRXNI ISPIT IZ MATEMATIKE 3 Prezime i ime: Broj indeksa: 1. Definisati diferencijabilnost funkcije u = u(x, y, z) u taqki (0, 1, 2). 2. Definisati
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Analitička geometrija 1. Tačka 1. MF000 Neka su A(1, 1) i B(,11) tačke u koordinatnoj ravni Oxy. Ako tačka S deli duž AB
1 Odre deni integrali. Smjena promjenjivih u odre denom integralu Primjena odre denog integrala 3. 3 Furijeovi redovi 4
150 ispitnih zadataka za vježbu podjeljenih po oblastima - detaljno raspisana rješenja ovih zadataka možete skinuti sa stranice pf.unze.ba\nabokov\za vjezbu Sadržaj 1 Odre deni integrali. Smjena promjenjivih
I N Ž E N J E R S K A M A T E M A T I K A 2. Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA
I N Ž E N J E R S K A M A T E M A T I K A 64 Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA 4 Osnovni pojmovi Činjenica da se mnogi zakoni fizike i drugih nauka iskazuju uz pomoć diferencijalnih jednačina
Dužina luka i oskulatorna ravan
Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x
ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
1 Pojam funkcije. f(x)
Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije
ZI. NEODREðENI INTEGRALI
ZI. Nodrđni intgrali 7 ZI. NEODREðENI INTEGRALI. Antidrvacij. Pronañi tri antidrivacij funkcij.. Odrdi sv antidrivacij funkcij.. Pronañi dvij antidrivacij funkcij.. Pronañi antidrivaciju funkcij za koju
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
f n z n, (2) F (z) = pri čemu se pretpostavlja da red u (2) konvergira bar za jednu konačnu vrednost kompleksne promenljive Z(f n ) = F (z).
Z-TRANSFORMACIJA Laplaceova transformacija je primer integralne transformacije koja se primenjuje na funkcije - originale. Ova transformacija se primenjuje u linearnim sistemima koji su opisani diferencijalnim
ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš
1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva
I Pismeni ispit iz matematike 1 I
I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
1.1 Tangentna ravan i normala površi
Površi. Tangentna ravan i normala površi Zadatak Data je površ r(u, v) = (u cos v, u sin v, a 2 u 2 ), a = const. Ispitati o kojoj se površi radi i odrediti u i v linije. Zadatak 2 Data je površ r(u, v)
4 Numeričko diferenciranje
4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)
3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1
Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3
Neodred eni integrali
Neodred eni integrali Definicija. Za funkciju F : I R, gde je I interval, kažemo da je primitivna funkcija funkcije f : I R ako je za svako I. F () f() Teorema 1. Ako je F : I R primitivna funkcija za
1 Obične diferencijalne jednadžbe
1 Obične diferencijalne jednadžbe 1.1 Linearne diferencijalne jednadžbe drugog reda s konstantnim koeficijentima Diferencijalne jednadžbe oblika y + ay + by = f(x), (1) gdje su a i b realni brojevi a f
Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije
Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti
MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja