SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD
|
|
- Σταμάτιος Ρέντης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujna Dragana Zekić
2 SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD TEMA: Unutrašnje sile za trozglobni okvir i planovi pomaka Osijek, 15. rujna Dragana Zekić
3 SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZNANSTVENO PODRUČJE: Tehničke znanosti ZNANSTVENO POLJE: Druge temeljne tehničke znanosti ZNANSTVENA GRANA: Tehnička mehanika TEMA: Unutrašnje sile za trozglobni okvir i planovi pomaka PRISTUPNIK: Dragana Zekić NAZIV STUDIJA: Sveučilišni preddiplomski studij Za konstrukcijski sustav na crtežu treba izračunati unutrašnje sile u presjeku n-n klasičnim putem iz uvjeta ravnoteže i metodom virtualnog rada. Potrebno je nacrtati dijagrame unutrašnjih sila te rezultate kontrolirati u jednom od programskih paketa. Za mehanizam odrediti kutove zaokreta tijela 2 i 3, te pomake točaka C, D, E i F. Zadatak je potrebno riješiti pomoću plana brzina. Osijek, 15. rujna Mentor/ica Predsjednik/ica Odbora za završne i diplomske ispite
4
5 SADRŽAJ: 1. Sažetak Unutrašnje sile Ravninski prikaz unutrašnjih sila Konvencije o predznacima Diferencijalne i integralne veze kontinuiranog opterećenja poprečne sile i momenta savijanja u nekom presjeku Zadatak Izračun unutrašnjih sila u presjeku n-n klasičnim postupkom iz uvjeta ravnoteže Izračun reakcija u ležajevima Izračun unutarnjih sila u presjeku n-n Analiza ravnoteže virtualnim radom Načelo virtualnog rada Zadatak Izračun unutrašnjih sila u presjeku n-n metodom virtualnog rada Zadatak Dijagrami unutrašnjih sila Kontrola u programu Autodesk Robot Structural Analysis Professional Proračun kutova zaokreta pomoću plana brzina Uvod Zadatak Literatura Zekić, Dragana 1
6 1. SAŽETAK Mehanika je temeljna i najstarija grana fizike koja se bavi zakonima ravnoteže i gibanjima materijalnih tijela. Istražuje najjednostavnije prirodne pojave, a to su mirovanje i gibanje. Gibanje i mirovanje su relativne pojave, jer apsolutno mirovanje i apsolutno gibanje ne postoje u prirodi. Ako tijelo ne mijenja svoj položaj u odnosu na okolinu, može se reći da tijelo miruje. Pri tome tijelo i okolina međusobno djeluju jedno na drugo nekim silama, a takvo stanje mirovanja se zove ravnoteža. Gibanje je pojava pri kojoj materijalna tijela mijenjaju svoj međusobni položaj u prostoru tijekom vremena. Pri svakoj promjeni položaja na tijelo djeluje neki vanjski uzrok koji se naziva sila. Mehanika se bavi i silama, dakle ona istražuje ravnotežno stanje kao i uzroke gibanja. Zekić, Dragana 2
7 2. Unutrašnje sile Postupcima određivanja sila u osloncima i vezama uslijed djelovanja aktivnog vanjskog opterećenja, dobivaju se sve vanjske sile koje djeluju na jedan konstrukcijski sustav i njegove sastavne elemente. Unutrašnje sile u presjecima punih konstrukcija rabe se za određivanje dimenzija elemenata tih konstrukcija. Temeljno načelo koje se rabi pri određivanju unutrašnjih sila u presjeku, jest da je opterećenje izabranog dijela presječenog nosača u ravnoteži sa silama u presjeku. Sile u presjeku izabranog dijela konstrukcije su sile koje prikazuju djelovanje sila odbačenog dijela konstrucije. Sile presjeka su raspoređene po cijeloj površini presjeka te se uvijek mogu prikazati jednom silom i momentom, obično u točki težišta presjeka. Dakle, djelovanje sila presjeka može se prikazati dinamom sila na točku težišta presjeka. Poprečna sila T Y u nekom presjeku nastoji presjeći presjek u smjeru osi Y. Poprečna sila T Z u nekom presjeku nastoji presjeći presjek u smjeru osi Z. Uzdužna sila N X u nekom presjeku nastoji produžiti presjek u smjeru osi X. Moment savijanja M Y u nekom presjeku nastoji saviti presjek oko osi Y. Moment savijanja M Z u nekom presjeku nastoji saviti presjek oko osi Z. Moment uvrtanja M X u nekom presjeku nastoji uvrnuti presjek oko osi X. Slika 1.1 Zekić, Dragana 3
8 Normalna ili uzdužna sila N u nekom presjeku jednaka je zbroju svih uzdužnih projekcija lijevo ili desno od presjeka. Poprečna ili transverzalna sila T u nekom presjeku jednaka je zbroju svih poprečnih prosjekcija lijevo ili desno od presjeka. Moment M u nekom presjeku jednak je zbroju svih momenata lijevo ili desno od presjeka. ZAKLJUČAK Unutrašnje sile u nekom presjeku tvore ravnotežu sa svim silama lijevo ili desno od tog presjeka. Zekić, Dragana 4
9 2.1. Ravninski prikaz unutrašnjih sila Za određivanje unutrašnjih sila nužno je usvojiti određene konvencije o predznacima, kako bi se bez moguće pogrješke dobili stvarni predznaci izračunatih unutrašnjih sila Konvencije o predznacima Predznaci se usvajaju na sljedeči način: Ako se po konstrukcijskom elementu kreće s lijeve strane, odnosno, dio presječene konstrukcije ostaje s lijeve strane, slika 1.2.a, tada se u presjeku pretpostavljaju: pozitivna uzdužna sila, negativna poprečna sila i pozitivni moment. Ako se po konstrukcijskom elementu kreće s desne strane, odnosno, dio presječene konstrukcije ostaje s desne strane, slika 1.2.b, tada se u presjeku pretpostavljaju: negativna uzdužna sila, pozitivna poprečna sila i negativni moment. Slika 1.2. Izračun unutrašnjih sila u nekom presjeku postupcima slijeva ili sdesna ostaje po slobodnom izboru. Uobičajno je izabrati postupak koji je kraći, odnosno, postupak koji izračunima ima manji broj vanjskih sila, dok preostali postupak može služiti kao kontrola. Zekić, Dragana 5
10 2.3. Diferencijalne i integralne veze kontinuiranog opterećenja poprečne sile i momenta savijanja u nekom presjeku Diferencijalnim i integralnim vezama kontinuiranog opterećenja, poprečne sile i momenta savijanja u nekom presjeku, definiran je nagib tangente na krivulju T-x u ovisnosti o vrijednosti q(x), te nagib tangente krivulje M-x u ovisnosti o vrijednosti Tx. Dakle, u svakom presjeku na temelju vrijednosti q(x), moguće je odrediti vrijednosti T X i M X i obrnuto. Neka je jedan diferencijalno mali dio grede opterećen kontinuiranim opterećenjem i uravnotežen silama presjeka kao na slici 1.3. Slika 1.3. ZAKLJUČAK Nagib tangente krivulje poprečne sile u nekom presjeku x proporcionalan je s veličinom kontirnuiranog opterećenja q(x). Nagib tangente krivulje momenta savijanja u nekom presjeku x proporcionalan je s veličinom poprečne sile u tom presjeku. Što je veća poprečna sila T to je veći nagib krivulje M-x. Gdje je poprečna sila jednaka nuli ili mijenja predznak, nagib krivulje M-x nema, a vrijednost momenta savijanja M(x) ima najveću vrijednost ili egstrem. Zekić, Dragana 6
11 3. ZADATAK Izračun unutrašnjih sila u presjeku n-n klasičnim postupkom iz uvjeta ravnoteže Izračun reakcija u ležajevima REAKCIJE: M D DOLJE = 0 F X = 0 M B = 0 3 M A = 0 KONTROLA: F Y = 0 Zekić, Dragana 7
12 Izračun unutarnjih sila u presjeku n-n Presjek lijevo Moment savijanja, Poprečna sila, Uzdužna sila, Zekić, Dragana 8
13 Presjek desno Moment savijanja, Poprečna sila, Uzdužna sila, Zekić, Dragana 9
14 4. Analiza ravnoteže virtualnim radom 4.1. Načelo virtualnog rada Virtualni radovi predstavljaju temeljna načela mehanike i daju opći energetski kriterij ravnoteže mehaničkih sustava. Za većinu zadaća ravnoteže sila, metode koje se temelje na analizi radova često su pogodnije od metoda koje se temelje na jednadžbama ravnoteže. Elementarni rad sile i momenta u razmjeru je s elementarnim pomacima ds i dφ. U slučaju ravnoteže nema gibanja pa su pomaci pretpostavljeni, zamišljeni, dakle x=0. Zamišljeni (virtualni) pomaci označavaju se varijacijama δx i δφ. Virtualni rad je zamišljeni rad nad zamišljenim pomacima koji nisu stvarni, ali su mogući. Uz pomoć stavke virtualnog rada i poznavanja pomaka sustava koji se giba u ravnini s jednim stupnjem slobode, lako se određuju sile u vezama i osloncima te unutarnje sile u presjecima nosača. Osnovno je pravilo u sljedećem: ukloniti vanjsku ili dodati unutarnju vezu kako bi se definirao virtualni rad tražene sile u vezama ili unutarnje sile ono što tražimo to oslobađamo. Preostaje definirati plan pomaka cijelog sustava na temelju preostalih uvjeta veza i oslonca te definirati virtualne radove svih promatranih aktivnih sila. Virtualni radovi sile i momenta nad virtualnim pomacima jednaki su: δw F = F δs, δw M = M δφ Ako je virtualni pomak neke točke M krutog tijela jednak δφ M, onda su virtualni pomaci bilo koje točke i tog tijela jednaki δs i, odnosno vrijedi: δ s i = δ s M + δ s i/m = δ s M + δ ö r i/m Virtualni rad sila i momenata nad virtualnim pomakom δs i, koji djeluje na ruto tijelo, može se napisati kao: δw = F i δ s i = F i (δ s M + δ ö r i/m) Kako su sve sile i momenti koji djeluju na neko kruto tijelo ili statički sustav krutih tijela u ravnoteži, tada su svi radovi nad virtualnim pomacima δs M i δφ jednaki nuli, odnosno može se zapisati uvjet ravnoteže konzervativnih sila δw = 0, δa = 0 Zekić, Dragana 10
15 Taj izraz predstavlja temeljno načelo virtualnog rada za kruto tijelo u ravnoteži i glasi: SILE I MOMENTI KOJI DJELUJU NA KRUTO TIJELO SU U RAVNOTEŽI, AKO JE ZBROJ PRIPADNIH VIRTUALNIH RADOVA SVIH TIH SILA I MOMENATA NAD BILO KOJIM VIRTUALNIM POMACIMA JEDNAK NULI! Zekić, Dragana 11
16 5. Zadatak Izračun unutrašnjih sila u presjeku n-n metodom virtualnog rada Određivanje unutrašnjih momenata u presjeku n-n metodom virtualnog: Ʃ A = 0 - -F Q 2 = 0 = = 0,44 = 0,21 = 0,477 0,46 = -0,23-0,5 = 0,25 =0,119 = 0,48 = 0,24 = 0,23 = 0, Q 2 0,24 = 0 - -F + Zekić, Dragana 12
17 Određivanje unutrašnjih poprečnih sila u presjeku n-n metodom virtualnog rada: Ʃ A = 0 - F - M + = 0 = = = = = 0,25 = 0,23 = 0,23 = 0,24 = 0,48 = 0,44 = 0,21 0,44-0,21 F - M + = 0 Zekić, Dragana 13
18 Određivanje unutrašnjih uzdužnih sila u presjeku n-n metodom virtualnog rada: Ʃ A = 0 - F + = 0 = = = = 2,1 = 0,46 = 0 = 0,46-0,46 F + = 0 Zekić, Dragana 14
19 6. Zadatak Dijagrami unutrašnjih sila Dijagrami unutrašnjih sila rabe se pri dimenzioniranju nosača, kako bi se u svakom presjeku mogle znati vrijednosti pojedinih unutrašnjih sila. Kod crtanja dijagrama unutrašnjih sila potrebno je unutrašnje sile izračunati u karakterističnim presjecima, a to su: 1. mjesta djelovanja koncentriranih opterećenja 2. mjesta početaka i završetaka raspodijeljenih opterećenja 3. mjesta promjene položaja glavne osi nosača Na mjestima djelovanja koncentriranih opterećenja potrebno je izračunati unutrašnju silu s lijeve i desne strane presjeka. To znači sljedeće: Ako na nekom mjestu djeluje koncentrirana poprečna sila, u tom presjeku potrebno je odrediti unutrašnje poprečne sile s obje strane tog presjeka. Ako na nekom mjestu djeluje koncentrirana uzdužna sila, u tom presjeku potrebno je odrediti unutrašnje uzdužne sile s obje strane tog presjeka. Ako na nekom mjestu djeluje koncentrirani moment savijanja, u tom presjeku potrebno je odrediti unutrašnje momente s obje strane tog presjeka. Iz diferencijalnih i integralnih veza mogu se izvesti određeni zaključci koji će biti od pomoći pri konstruiranju dijagrama unutrašnjih sila. ZAKLJUČCI 1. U dijelovima konstrukcije gdje je vrijednost kontinuiranog opterećenja q(x) jednaka nuli, vrijednost poprečne sile T X je konstantna. 2. U dijelovima konstrukcije gdje je vrijednost poprečne sile T X jednaka nuli, vrijednost momenta savijanja M X je konstantna. 3. Dijagram poprečne sile ima skok na mjestu gdje djeluje koncentrirana vertikalna sila. 4. Dijagram momenta savijanja ima skok na mjestu gdje djeluje koncentrirani moment savijanja. Zekić, Dragana 15
20 PRORAČUN UNUTRAŠNJIH SILA U CIJELOM NOSAČU MOMENT SAVIJANJA M Zekić, Dragana 16
21 POPREČNA SILA T Zekić, Dragana 17
22 UZDUŽNA SILA N Zekić, Dragana 18
23 6.2. Kontrola u programu Autodesk Robot Structural Analysis Professional 2014 Dijagram momenta savijanja M Dijagram poprečne sile T Zekić, Dragana 19
24 Dijagram uzdužne sile N Zekić, Dragana 20
25 7. Proračun kutova zaokreta pomoću plana brzina 7.1. Uvod Uz mnogo sličnosti sa virtualnim radom, po sličnom načelu dolazi se i do kinematskih veličina koje su u ovom slučaju stvarne. U pravilu je za zadani mehanizam s jednim stupnjem slobode, na temelju kinematske veličine jednog tijela (pomak, brzina ili ubrzanje), potrebno odrediti kinematske veličine drugog. Postupak se može prikazati u nekoliko koraka: 1) određuju se polovi pomaka i brzina prema uvjetima veza i oslonaca. 2) crta se poznata kinematska veličina jednog tijela. 3) konstruira se plan pomaka preostalog dijela mehanizma, prema uvjetima veza i oslonaca. 4) iz geometrijskih uvjeta određuju se kinematske veličine preostalih tijela kao i tijela za koje se iste traže. 5) prema dobivenim veličinama mogu se odrediti kinematske veličine bilo koje točke mehanizma. Pol pomaka je ona točka tijela kojoj je u promatranom trenutku pomak jednak nuli, a zove se i trenutnim centrom rotacije. To je točka koja u tom trenutku miruje. Naravno, pri općem gibanju tijela u ravnini, položaj pola pomaka u vremenu se mijenja. Zekić, Dragana 21
26 8. Zadatak 2 φ 1 = 3,5 rad Zekić, Dragana 22
27 VERTIKALNI HORIZONTALNI Zekić, Dragana 23
28 POMACI TOČAKA Zekić, Dragana 24
29 9. Literatura 1) Mehanika 1 - Dr. sc. Aleksandar Jurić, dipl. ing. građ., Osijek ) Mehanika 2 - Dr. sc. Aleksandar Jurić, dipl. ing. građ., Osijek ) Grafomehanika - Dr. sc. Aleksandar Jurić, Mr.sc. Đurđica Matošević, Jurko Zovkić, Osijek ) Skripte s predavanja i vježbi Zekić, Dragana 25
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKKULTET ZAVRŠNI RAD
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKKULTET ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKKULTET ZAVRŠNI RAD TEMA: IZRAČUN UNUTRAŠNJIH SILA I PLANOVA
PROSTORNI STATIČKI ODREĐENI SUSTAVI
PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
STATIČKI ODREĐENI SUSTAVI
STTIČKI ODREĐENI SUSTVI STTIČKI ODREĐENI SUSTVI SVOJSTV SUSTV Kod statički određenih nosača rješenja za reakcije i unutrašnje sile su jednoznačna. F C 1. F x =0 C 2. M =0 3. F y =0 Jednoznačno rješenje
PROSTA GREDA (PROSTO OSLONJENA GREDA)
ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD Osijek, 15. rujan 2017. Ivan Kovačević SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD
Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.
Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =
Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.
Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k
Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika
1. Kinematika Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika Kinematika (grč. kinein = gibati) je dio mehanike koji
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Prostorni spojeni sistemi
Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
SVEUČILIŠTE JOSIPA JURAJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD
SVEUČILIŠTE JOSIPA JURAJA STROSSMAYERA U OSIJEKU ZAVRŠNI RAD Osijek, 15.09.2015. SVEUČILIŠTE JOSIPA JURAJA STROSSMAYERA U OSIJEKU ZAVRŠNI RAD TEMA: USPOREDBA REZULTATA PRORAČUNA STATIČKI NEODREĐENIH SUSTAVA
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Geometrijske karakteristike poprenih presjeka nosaa. 9. dio
Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ZAVRŠNI RAD Osijek, 14. rujna 2017. Marijan Mikec SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ZAVRŠNI RAD Izrada projektno-tehničke dokumentacije armiranobetonske
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA
ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,
Masa, Centar mase & Moment tromosti
FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:
Dinamika tijela. a g A mg 1 3cos L 1 3cos 1
Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet
Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri
PRORAČUN GLAVNOG KROVNOG NOSAČA
PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA
BETONSKE KONSTRUKCIJE 2
BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
ISPIT GRUPA A - RJEŠENJA
Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga AB oslonjena je na dva čelična štapa u A i B i opterećena trouglastim opterećenjem, kao na slici desno. Ako su oba štapa iste dužine L,
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
SILE U PRESEKU GREDNOG NOSAČA
SIE U PRESEKU GREDNOG NOSAČA DEFINICIJE SIA U PRESECIMA Projektovanje bilo kog konstruktivnog elemenata podrazumeva određivanje unutrašnjih sila u tom elementu da bi se obezbedilo da materijal od koga
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.
J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
TEHNIČKA MEHANIKA I 9. PREDAVANJE SILE U PRESEKU GREDNOG NOSAČA. Str knjiga Poglavlje 12 Unutrašnje sile
5.5.2016 1 TEHNIČKA MEHANIKA I 9. PREDAVANJE SILE U PRESEKU GREDNOG NOSAČA Str 267-290 knjiga Poglavlje 12 Unutrašnje sile 5.5.2016 2 ŠTA ĆEMO NAUČITI U OVOM POGLAVLJU? Određivanje unutrašnjih sila u presecima
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujan 2015. Marija Vidović SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJE
Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova)
šupanijsko natjecanje iz zike 017/018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) U prvom vremenskom intervalu t 1 = 7 s automobil se giba jednoliko ubrzano ubrzanjem
9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE
Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Prikaz sustava u prostoru stanja
Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja je jedan od načina prikaza matematičkog modela sustava (uz diferencijalnu jednadžbu, prijenosnu funkciju itd). Promatramo linearne sustave
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Dimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama.
Štap optereen na savijanje naivamo nosa ili grea. Savijanje nosaa a) Napreanja ( i τ) b) Deformacije progib (w) Os štapa se ko savijanja akrivljuje to je elastina ili progibna linija nosaa. Savijanje ravnog
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
konst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
7. Titranje, prigušeno titranje, harmonijsko titranje
7. itranje, prigušeno titranje, harmonijsko titranje IRANJE Općenito je titranje mijenjanje bilo koje mjerne veličine u nekom sustavu oko srednje vrijednosti. U tehnici titranje podrazumijeva takvo gibanje
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
GRAĐEVINSKI FAKULTET U BEOGRADU Modul za konstrukcije PROJEKTOVANJE I GRAĐENJE BETONSKIH KONSTRUKCIJA 1 NOVI NASTAVNI PLAN
GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit Modul za konstrukcije 16.06.009. NOVI NASTAVNI PLAN p 1 8 /m p 1 8 /m 1-1 POS 3 POS S1 40/d? POS 1 d p 16 cm 0/60 d? p 8 /m POS 5 POS d p 16 cm 0/60 3.0 m
20 mm. 70 mm i 1 C=C 1. i mm
MMENT NERJE ZDTK. Za površinu prema datoj slici odrediti: a centralne težišne momente inercije, b položaj glavnih, centralnih osa inercije, c glavne, centralne momente inercije, d glavne, centralne poluprečnike
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.
Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a
Osnovne vrste naprezanja: Aksijalno naprezanje Smicanje Uvijanje. Savijanje. Izvijanje
Osnovne vrste napreanja: ksijalno napreanje Smicanje Uvijanje Savijanje Ivijanje 1 SVIJNJE GREDE SI Greda je opterećena na desnom kraju silom paralelno jednoj od glavnih centralnih osa inercije (y osi).
4. STATIČKI PRORAČUN STUBIŠTA
JBAG 4. STATIČKI PRORAČUN STUBIŠTA PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 9 5 SVEUČILIŠTE U ZAGREBU JBAG 4. Statiči proračun stubišta 4.. Stubišni ra 4... Analiza opterećenja 5 5 4 6 8 5 6 0