4.7 ΙΣΟΫΠΟΛΟΙΠΟΙ ΑΡΙΘΜΟΙ
|
|
- Σωκράτης Λαμπρόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΙΣΟΫΠΟΛΟΙΠΟΙ ΑΡΙΘΜΟΙ Το ζήτημα της διαιρετότητας τω αεραίω είαι υρίαρχο θέμα στη Θεωρία τω Αριθμώ Μια έοια που βοηθάει στη μελέτη αι επίλυση προβλημάτω διαιρετότητας είαι η έοια τω ισοϋπόλοιπω αριθμώ Για α γίει ατιληπτή η έοια αυτή, ας εξετάσουμε, για παράδειγμα, τα υπόλοιπα τω διαιρέσεω τω αεραίω με το αριθμό 5 Από τη ταυτότητα της αλγοριθμιής διαίρεσης γωρίζουμε ότι το υπόλοιπο της διαίρεσης εός αεραίου με το 5 είαι έας από τους πέτε αεραίους 0,1,,3 αι 4 Έτσι έχουμε 0= = = = = = + 6= = = = = = = = = = = Παρατηρούμε ότι οι αριθμοί 7,, 3 διαιρούμεοι με 5 αφήου το ίδιο υπόλοιπο Λέμε ότι οι αριθμοί αυτοί είαι ισοϋπόλοιποι με μέτρο 5 Ομοίως, λέμε ότι αι οι αριθμοί 49,, 1, 6 είαι ισοϋπόλοιποι με μέτρο 5, αφού διαιρούμεοι με 5 αφήου το ίδιο υπόλοιπο 4 Γειότερα, έχουμε: ΟΡΙΣΜΟΣ Έστω m έας θετιός αέραιος Δύο αέραιοι α αι β λέγοται ισοϋπόλοιποι με μέτρο m, ότα διαιρούμεοι με m αφήου το ίδιο υπόλοιπο Για α δηλώσουμε ότι οι α αι β είαι ισοϋπόλοιποι με μέτρο α β(modm) αι διαβάζουμε α ισοϋπόλοιπος του β μότουλο είαι ισοϋπόλοιπος του β μότουλο (mod 5), εώ 8/ 5(mod 5) Α το υπόλοιπο της ευλείδειας διαίρεσης του α με το προφαώς ισχύει m, γράφουμε m Α ο αέραιος α δε m, γράφουμε α / β(mod m ) Έτσι, m είαι υ, τότε
2 175 α υ(mod m) Από τη ισότητα της ευλείδειας διαίρεσης προύπτει το επόμεο θεώρημα, με το οποίο μπορούμε α διαπιστώσουμε α δυο αριθμοί είαι ισοϋπόλοιποι ΘΕΩΡΗΜΑ 11 α β(mod m ), α αι μόο α m ( α ΑΠΟΔΕΙΞΗ Α α β(mod m ), τότε από τις ευλείδειες διαιρέσεις τω α αι β με το m έχουμε α = m + υ, β = λm + υ Επομέως, α β = ( λ)m, που σημαίει ότι m ( α Ατιστρόφως, α m α β, τότε α β = ρm, δηλαδή α = β + ρm για άποιο αέραιο ρ Α ο β διαιρούμεος με το m δίει πηλίο αι υπόλοιπο υ, τότε β = m + υ, 0 υ < m Επομέως, α = m+ υ + ρm= ( + ρ) m+ υ, που σημαίει ότι ο α διαιρούμεος με m δίει υπόλοιπο επίσης υ Το συμβολισμό α β(mod m ) το εισήγαγε ο Gauss( ) Όπως εξήγησε ο ίδιος, υιοθέτησε το σύμβολο " ", επειδή η σχέση α β(mod m ) έχει αάλογες ιδιότητες με τη ισότητα Πράγματι, ως άμεσες συέπειες του ορισμού τω ισοϋπόλοιπω αριθμώ προύπτου οι ιδιότητες: α α(modm ) (ααλαστιή) Α α β(mod m ), τότε β α(mod m ) (συμμετριή) Α α β(mod m ) αι β γ (mod m ), τότε α γ (mod m ) (μεταβατιή) Επίσης, ισχύει το επόμεο θεώρημα: ΘΕΩΡΗΜΑ 1 Α α β(mod m ) αι γ δ(mod m ), τότε α + γ β + δ(mod m ) α γ β δ(mod m ) α γ β δ (mod m ) ΑΠΟΔΕΙΞΗ Έχουμε α β = m αι γ δ = λm, όπου, λ αέραιοι Επομέως: ( α + γ) ( β+ δ) = ( α + ( γ δ) = m+ λm= ( + λ) m, που σημαίει ότι α + γ β+ δ(modm)
3 176 ( α γ) ( β δ) = ( α ( γ δ) = m λm= ( λ) m, που σημαίει ότι α γ β δ(modm) ( αγ βδ) = αγ βγ+ βγ βδ = ( α γ ( γ δ) β = mγ λmβ = ( γ λ m, που σημαίει ότι αγ βδ (mod m ) Η σχέση α β(mod m ) λέγεται ισοτιμία Ως άμεση συέπεια του θεωρήματος προύπτει ότι: Α α β(modm), τότε α + γ β+ γ(modm) αι α γ β γ(modm) για άθε αέραιο γ Το παραπάω θεώρημα γειεύεται αι για περισσότερες από δύο ισοτιμίες Δηλαδή Α α1 β1(mod m), α β (modm),, α β (modm), τότε α1 + α + + α β1 + β + + β (mod m) Ιδιαίτερα: α1 α α β1 β β (mod m) Α α β(modm), τότε α β (modm) Εώ, με πολλαπλασιασμό τω μελώ μιας ισοτιμίας με το ίδιο αέραιο προύπτει πάλι ισοτιμία, δε ισχύει το ίδιο αι για τη διαίρεση Για παράδειγμα, α διαιρέσουμε τα μέλη της ισοτιμίας 14 8(mod 6) με, δε προύπτει ισοτιμία Πράγματι, 7 / 4(mod 6) Οι ισοτιμίες εμφαίζοται συχά στη αθημεριή μας ζωή Για παράδειγμα, ο ωροδείτης τω ρολογιώ δείχει τη ώρα modulo 1 αι ο χιλιομετριός δείτης τω αυτοιήτω δείχει τα χιλιόμετρα που έχουμε διαύσει modulo Έτσι, ότα η ώρα είαι 18, το ρολόι δείχει 6, που είαι το υπόλοιπο της διαίρεσης του 18 με το 1, αι ότα έα αυτοίητο έχει διαύσει συολιά km, δείχει km, που είαι το υπόλοιπο της διαίρεσης του με το ΕΦΑΡΜΟΓΕΣ 1 1 Έστω N = α 10 + α α α110+ α 0 η δεαδιή παράστα-ση εός θετιού αέραιου N αι S = α + α 1 + α + + α 1 + α 0 το άθροι-σμα τω ψηφίω του Να αποδειχτού τα ριτήρια διαιρετότητας:
4 177 (i) 5 N, α αι μόο α 5 α 10+ α (ii) 9 N, α αι μόο α 9 S ΑΠΟΔΕΙΞΗ 1 0 (i) Προφαώς, 5 α 10 + α 10 + α α Επομέως, α 10 + α 10 + α α 10 0(mod 5) 1 1 α 10 + α 10 + α α 10 + α 10+ α α 10+ α (mod 5) Δηλαδή, έας αέραιος διαιρείται με 5, α αι μόο α το τελευταίο διψήφιο τμήμα του διαιρείται με 5 (ii) Έχουμε διαδοχιά: 10 1(mod 9) 10 1 (mod 9), για =0134,,,,,, 10 1(mod 9) α 10 α (mod 9) Επομέως, α 0 α 0(mod 9), α110 α1(mod 9),, α10 α (mod 9) Προσθέτουμε τις ισοτιμίες ατά μέλη αι έχουμε: α 10 + α 10 + α α 10+ α α + α + α + + α + α (mod 9), 1 1 δηλαδή N S(mod 9 ) Να βρεθεί το τελευταίο ψηφίο του αριθμού ΛΥΣΗ Έχουμε διαδοχιά: 3+ 0(mod 5) 3 (mod 5) 3 ( ) (mod 5) 3 (mod 5) Επομέως, 3 ( ) 0(mod 5), δηλαδή 3 + 0(mod 5) Άρα 53 +, που σημαίει ότι ο αριθμός 3 + λήγει σε 0 ή σε 5 Όμως, ο αριθμός 3 + είαι περιττός ως άθροισμα εός περιττού αι εός άρτιου αι άρα λήγει σε 5
5 178 ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ 1 Δίοται τα σύολα A = { 33, 17,3,35,41, 0} αι B ={0,1,,3,4,5,6 } Να ατιστοιχίσετε τα στοιχεία α A σε εεία τα στοιχεία β B για τα οποία ισχύει β α(mod7) Ποιες από τις παραάτω προτάσεις είαι αληθείς; (i) (mod3), Z, (ii) (mod5), Z, (iii) + 5 1(mod4), Z, (i) ( m+ 1) 1(modm), m N 3 Να βρείτε τους διψήφιους θετιούς αέραιους α για τους οποίους ισχύει α 6 (mod11) 4 Να βρείτε τους διψήφιους θετιούς αέραιους α για τους οποίους ισχύει (i) α (mod3) αι α 1(mod4) (ii) α 3(mod4) αι α 4(mod6) 5 Να βρείτε το υπόλοιπο της διαίρεσης 100 (i) του με το 7, 100 (ii) του 9 με το (ii) του 3 με το 7, 004 (i) του 5 με το 6 6 Να αποδείξετε ότι για άθε N ισχύει (i) 8 ( 5 + 7) (ii) 5 ( ), (iii) 15 ( 4 1) (i) 1 ( ) 7 Να βρείτε (i) το τελευταίο ψηφίο του αριθμού (ii) τα δύο τελευταία ψηφία του αριθμού B ΟΜΑΔΑΣ 1 Να αποδείξετε ότι ο αέραιος 3α 1, όπου α Z, δε είαι ποτέ τετράγωο αεραίου Να αποδείξετε ότι για άθε θετιό πρώτο p > 5 ισχύει 10 ( p 1) ή 10 ( p 1) 3 Να βρείτε τις τιμές του α Z για τις οποίες ισχύει 5 ( α +α 6) +
6 179 4 Να βρείτε τις τιμές του x Z για τις οποίες ισχύει x 1(mod) αι x (mod3) 5 Να αποδείξετε ότι για άθε α Z ισχύει 3 5 (i) α α(mod6) (ii) α α(mod10) 6 Έστω α, β Z αι m, n N Να αποδείξετε ότι (i) Α α β(modm) αι n m, τότε α β(modn) (ii) Α nα nβ(modm) αι ( m, n) = 1, τότε α β(modm) 7 Α α, β Z αι m N με β(modm) α, α αποδείξετε ότι ( α, m) = ( β, m) 8 Να αποδείξετε ότι: (i) 39 ( ), (ii) 7 ( ) 9 Να αποδείξετε ότι: (i) Για άθε θετιό αέραιο α ισχύει α 0 ή 1 ή 4(mod5) (ii) Οι αριθμοί 5 + αι είαι άρρητοι 10 Να αποδείξετε ότι για άθε θετιό πρώτο p > 3 ισχύει p 1 (mod3) αι στη συέχεια α αποδείξετε ότι οι αριθμοί p + αι p 1 + p + p3 είαι σύθετοι για όλους τους θετιούς πρώτους pp, 1, p, p3 που είαι μεγαλύτεροι από το 3 11 Α p, q είαι θετιοί πρώτοι με p >q 5, α αποδείξετε ότι 4 ( p q ) 1 Να βρείτε το ψηφίο τω μοάδω τω αριθμώ αι 13 Να αποδείξετε ότι ο αριθμός + 1 είαι σύθετος ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 Να αποδείξετε ότι από διαδοχιούς αεραίους αριβώς έας διαιρείται με το Να βρείτε τους θετιούς αεραίους α, β, γ για τους οποίους ισχύει α + β = = 8 6 γ Να αποδείξετε ότι το άθροισμα διαδοχιώ περιττώ φυσιώ είαι σύθετος αριθμός
7 180 4 Έστω α, β δύο θετιοί αέραιοι, με ( α, = 1 Να αποδείξετε ότι (i) ( α + β, α = 1 (ii) 5 (i) Έστω α, β θετιοί αέραιοι Να αποδείξετε ότι Α ( α, = 1, τότε ( α + β, α = 1 ( α + β,[ α, β]) = ( α, (ii) Να βρείτε τους θετιούς αεραίους αι [ α, β] = 360 α β + N, α α β β α α, β για τους οποίους ισχύει α + β = Έστω p, q δύο θετιοί πρώτοι, διαφορετιοί μεταξύ τους Να αποδείξετε ότι τα στοιχεία του συόλου S = { p + λq, λ N με 1 q αι 1 λ p } είαι διαφορετιά αά δύο 7 (i) Να αποδείξετε ότι > για άθε θετιό αέραιο 3 (ii) Να βρείτε τις θετιές αέραιες λύσεις της εξίσωσης = x 8 Δίοται οι θετιοί αέραιοι α, Να αποδείξετε ότι (i) Α ο α 1 είαι πρώτος, τότε α = αι ο είαι πρώτος (ii) Α ο α + 1 είαι πρώτος, τότε = αι ο α είαι πρώτος 9 Να αποδείξετε ότι (i) α 0 (mod8) ή α 1 (mod8) ή α 4 (mod8) (ii) Η εξίσωση x + y = 1998 δε έχει αέραιες λύσεις 10 (i) Να αποδείξετε ότι (mod4), (mod5) αι (mod100) 00 (ii) Να βρείτε τα δύο τελευταία ψηφία του 9 11 (i) Να βρείτε τους θετιούς αέραιους > για τους οποίους ισχύει: ( ) (ii) Να βρείτε τα ορθογώια με αέραια μήη πλευρώ, τω οποίω το εμβαδό αι η περίμετρος είαι αριθμητιά ίσα (iii) Έστω έα σημείο Α εός επιπέδου Για ποιες τιμές του ο χώρος γύρω από το Α μπορεί α αλυφθεί με αοιά -γωα, τα οποία δε έχου οιά εσωτεριά τους σημεία 1 Να βρείτε ο εμβαδό του τετραγώου που μπορεί α χωριστεί σε 5 μιρότερα τετράγωα, από τα οποία τα 4 έχου πλευρά ίση με 1, εώ το έα έχει πλευρά με μήος αέραιο αριθμό διαφορετιό από 1
8 Μπορείτε α γράψετε μεριούς αριθμούς, χρησιμοποιώτας αθέα από τα δέα ψηφία 0,1,,, 8, 9 μόο μία φορά, ώστε το άθροισμα τω αριθμώ αυτώ α είαι ίσο με Να βρείτε τους α, β Ν, με α > β, σε αθεμιά από τις παραάτω περιπτώσεις (i) α + β =10 αι ( α, β ) =, (ii) αβ =96 αι ( α, β ) =4, (iii) αβ =96 αι [ α, β] = 4 (i) ( α, = 4 αι [ α, β] = 4, () α + β =7( α, β ) αι [ α, β ] =60 15 Α α, β Ν, α αποδείξετε ότι ( α, β ) = ( α, 16 Έστω α, β Ν με ( α, = 1 Α το γιόμεο τω α αι β είαι τετράγωο φυσιού αριθμού, α αποδείξετε ότι αθέας από τους α αι β είαι τετράγωο φυσιού αριθμού ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Σε αθεμιά από τις παραάτω περιπτώσεις α υλώσετε το γράμμα Α, α ο ισχυρισμός είαι αληθής αι το γράμμα Ψ, α ο ισχυρισμός είαι ψευδής, αιτιολογώτας συγχρόως τη απάτησή σας 1 Η παραάτω ισότητα είαι η ταυτότητα της ευλείδειας διαίρεσης του α με το β: (i) 38 = ( 11 )( 3) + 5, α α = 38 αι β = 11 (ii) 38 = ( 3)( 11) + 5, α α = 38 αι β = 3 (iii) 47 = 7 ( 7) +, α α = 47 αι β = 7 (i) Το άθροισμα δύο άρτιω είαι άρτιος (ii) Το άθροισμα δύο περιττώ είαι περιττός (iii) Το άθροισμα 10 περιττώ είαι περιττός (i) Η εξίσωση x( x+ 1) = 1999έχει αέραια λύση () Υπάρχει αέραιος α που α μπορεί α πάρει συγχρόως τις μορφές α = 3 k + 1 αι α = 3 λ+, όπου, λ Z 3 (i) Α α βγ, τότε α β ή α γ (ii) Α βγ α, τότε β α αι γ α (iii) Α α ( β + γ) αι α β, τότε α γ (i) Α α β, τότε α β
9 18 4 (i) Α 3 α αι 4 α, τότε 1 α (ii) Α 4 α αι 6 α, τότε 4 α 5 (i) Α ( α, = ( α, γ), τότε [ α, β] = [ α, γ] (ii) Α ( α, = ( α, γ), τότε ( α, β, γ) = ( α, 6 Υπάρχου α, β N, ώστε (i) α + β = 100 αι ( α, = 3 (ii) α + β = 100 αι ( α, = 10 7 (i) Ο αριθμός 101 μπορεί α γραφεί ως άθροισμα δύο θετιώ πρώτω (ii) Α 3 ( α + 6β ), τότε 3 α 8 (i) Η εξίσωση x + 4y = 3 έχει αέραιες λύσεις (ii) Η εξίσωση x+ y =6 έχει άπειρες θετιές αέραιες λύσεις 9 (i) Α α β(mod4), τότε α β(mod4) (ii) Α α β(mod3), τότε α β(mod3) (iii) Α α 1 (mod3), τότε α 1(mod3) ή α 1(mod3) Να υλώσετε τη σωστή απάτηση σε αθεμιά από τις παραάτω περιπτώσεις: 1 Α α = 4 6+ x είαι η ταυτότητα της διαίρεσης του α με το 4 αι β = ( x+ 1)6 + 3 είαι η ταυτότητα της διαίρεσης του β με το ( x + 1), τότε A : x=0, B : x= 1, Γ : x=, Δ : x= 3 Α α =3 + υ είαι η ταυτότητα της διαίρεσης του α με το 3 αι ο α είαι άρτιος, τότε A : περιττός αι υ άρτιος B : άρτιος αι υ περιττός Γ :,υ άρτιοι ή,υ περιττοί 3 Α δ = ( 4+ 3, 4 1), τότε A: δ=4, B : δ=, Γ : δ= 1, Δ : Ο δ εξαρτάται από το 4 Α ο αριθμός x 7 x διαιρείται με το 1, τότε A: x=1, B : x= 4, Γ : x= 7, Δ : x= 5 Α ( α, = 3, ( β, γ) = 3 αι ( γ, α) = 3 5, τότε ο ( α, β, γ) είαι
10 183 A: 3 5, B : 3, Γ :, Δ : 3 6 Α ο είαι περιττός, τότε ο αέραιος A : (mod8), B : (mod3) Γ : (mod10), Δ : (mod4)
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)!
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να αποδείξετε ότι για κάθε θετικό ακέραιο ισχύει : 1 + 1 1! +! +! + +! = ( + 1)!. Να αποδείξτε ότι 6 10 [ ( 1) ] = ( + 1) ( + ) ( + ) (), για κάθε θετικό ακέραιο.. Να αποδείξετε ότι
Διαβάστε περισσότερα4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή
49 43 ΔΙΑΙΡΕΤΟΤΗΤΑ Εισαγωγή Στα Στοιχεία του Ευκλείδη, βιβλία VII, VIII και IX (περίπου 300 πχ), οι θετικοί ακέραιοι παριστάοται ως ευθύγραμμα τμήματα και η έοια της διαιρετότητας συδέεται άμεσα με τη
Διαβάστε περισσότερα(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ
ΙΑΙΡΕΤΟΤΗΤΑ Ορισµός: Λέµε ότι ο ακέραιος β 0διαιρεί το ακέραιο α και γράφουµε β/α, ότα η διαίρεση του α µε το β είαι τέλεια, δηλαδή υπάρχει κ Z τέτοιος ώστε α = κ β. Συµβολίζουµε ότι α = πολβ. Α ο β δε
Διαβάστε περισσότερα2.2 ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ
ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ Σύμφωα με το ορισμό του R, η πρόσθεση και ο πολλαπλασιασμός δύο μιγαδικώ αριθμώ γίοται όπως ακριβώς και οι ατίστοιχες πράξεις με διώυμα α + βx στο, όπου βέβαια ατί για
Διαβάστε περισσότεραΕ 1. Διαφορικός λογισμός (Κανόνες παραγώγισης)
Ε Διαφορικός λογισμός Καόες παραγώγισης Σελίδα από Πότε μια συάρτηση λέγεται παραγωγίσιμη στο σημείο του πεδίου ορισμού της ; Μια συάρτηση λέμε ότι είαι παραγωγίσιμη σ έα σημείο του πεδίου ορισμού της,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ. Κριτήρια διαιρετότητας
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Κριτήρια διαιρετότητας 11 Κριτήρια διαιρετότητας 11 1η Άσκηση Να βρεις ποιοι από τους φυσικούς αριθμούς που είαι αάμεσα από το 120 και το 140 διαιρούται με: το
Διαβάστε περισσότεραΠληθυσμός μιας έρευνας λέγεται το σύνολο των αντικειμένων που εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά.
ΣΤΑΤΙΣΤΙΚΗ Στατιστιή λέγεται ο λάδος τω Μαθηματιώ ο οποίος συγετρώει στοιχεία που ααφέροται σε έα σύολο ατιειμέω, τα ταξιομεί, αι τα παρουσιάζει σε ατάλληλη μορφή ώστε α μπορού α ααλυθού αι α ερμηευθού.
Διαβάστε περισσότερα1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ
ΜΕΡΟΣ Α.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ 67.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΟΡΙΣΜΟΣ Οομάζουμε ταυτότητα κάθε ισότητα που περιέχει μεταβλητές και επαληθεύεται για όλες τις τιμές τω μεταβλητώ αυτώ. Τετράγωο αθροίσματος
Διαβάστε περισσότεραΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΤΗΣ ΕΛΛΑΔΟΣ ΕΤΟΥΣ 007 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ ΚΑΤΗΓΟΡΙΑ: ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Απογευματιή εξέταση στα μαθήματα: «. Άλγεβρα» «.5
Διαβάστε περισσότεραΑ. Οι Πραγματικοί Αριθμοί
ΠΑΡΑΡΤΗΜΑ Α Οι Πραγματικοί Αριθμοί Α1 Να τοποθετήσετε σε φθίουσα σειρά τους αριθμούς: 01 0 15, 0 15,, 01 5 5 A Να υπολογίσετε τη τιμή της παράστασης 4 1 A Να ρεθού το πηλίκο και το υπόλοιπο της διαίρεσης
Διαβάστε περισσότεραστους μιγαδικούς αριθμούς
Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;
Διαβάστε περισσότερα78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας
Στα Μαθηματιά Γειής Παιδείας Tι οομάζουμε συάρτηση Tι οομάζουμε παραγματιή συάρτηση πραγματιής μεταβλητής Μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α πεδίο ορισμού ατιστοιχίζεται σε έα αριβώς στοιχείο
Διαβάστε περισσότεραΔυνάμεις πραγματικών αριθμών
Κεφάλαιο 1 ο 45 Β. Δυάμεις πραγματικώ αριθμώ Α έχουμε έα γιόμεο της μορφής (-) (-) (-) (-) όπου κάθε παράγοτας είαι (δηλαδή ο ίδιος ο αριθμός) μπορούμε α το συμβολίσουμε με μια πιο απλή μορφή : (-) 4.
Διαβάστε περισσότεραΜιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Θεωρία - Μέθοδοι
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχολογική Κατεύθυση Θεωρία - Μέθοδοι ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Μάθημα ο ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ Η εξίσωση x δε έχει λύση στο σύολο τω πραγματικώ αριθμώ, αφού
Διαβάστε περισσότεραβ± β 4αγ 2 x1,2 x 0.
Ορισµοί, ισότητα, µέτρο, άθροισµα µιγαδικώ αριθµώ Μιγαδικό επίπεδο Γεωµετρική παράσταση του αθροίσµατος µιγαδικώ αριθµώ ax 3 + β x + γ x+ δ = 0 Η προσπάθεια επιλύσεως εξισώσεω 3 ου βαθµού ( ) και δευτεροβαθµίω
Διαβάστε περισσότερα+ + = + + α ( β γ) ( )
ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ Αριθµητική παράσταση Αριθµητική παράσταση λέγεται µια σειρά αριθµώ που συδέοται µεταξύ τους µε πράξεις. Η σειρά τω πράξεω σε µια αριθµητική παράσταση είαι η εξής: 1. Υπολογίζουµε
Διαβάστε περισσότερα4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ. Εισαγωγή
4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Εισαγωγή Η Θεωρία Αριθμώ, δηλαδή η μελέτη τω ιδιοτήτω τω θετικώ ακεραίω, έθεσε από πολύ ωρίς τους μαθηματικούς μπροστά στο εξής πρόβλημα: Κάποια πρόταση αληθεύει
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ
015 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ 0. ΕΙΣΑΓΩΓΗ - ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Περιεχόμεα 0. ΕΙΣΑΓΩΓΗ - ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ... 1. ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ... 5. ΕΥΚΛΕΙΔΙΑ ΔΙΑΙΡΕΣΗ... 1. ΔΙΑΙΡΕΤΟΤΗΤΑ... 1 4 ΜΕΓΙΣΤΟΣ
Διαβάστε περισσότερα2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ
1 2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΘΕΩΡΙΑ 1. Κλάσµα : Είαι το µαθηµατιό σύµβολο το οποίο δηλώει σε πόσα ίσα µέρη χωρίσαµε το όλο αι πόσα µέρη πήραµε Κλάσµα : πόσα µέρη πήραµε σε πόσα ίσα µέρη χωρίσαµε : αριθµητής
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α' ΛΥΚΕΙΟΥ. Η ΕΞΙΣΩΣΗ αx+β=0
Η ΕΞΙΣΩΣΗ α+β=0 εξισώσεις πρώτου βαθμού. Να λύσετε τις παρακάτω εξισώσεις: α) 5 ( ) = ( ) β) 8( ) ( ) = ( + ) 5(5 ) γ) (5 ) ( ) = ( + ) δ) (-)-(-)=7( -)-(+). Να λύσετε τις παρακάτω εξισώσεις: 5 α) β) 8
Διαβάστε περισσότερα1. Το σύνολο των μιγαδικών αριθμών
Το σύολο τω μιγαδικώ αριθμώ Γωρίζουμε ότι η εξίσωση δε έχει λύση στο σύολο τω πραγματικώ αριθμώ Για α ξεπεράσουμε αυτή τη αδυαμία «μεγαλώσαμε» το σύολο και δημιουργήσαμε το σύολο, έτσι, ώστε α έχει τις
Διαβάστε περισσότεραΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Θεωρία Άλυτες Ασκήσεις Θέματα εξετάσεων
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Θεωρία Άλυτες Ασκήσεις Θέματα εξετάσεω 1 Α. ΜΕΡΟΣ :ΘΕΩΡΙΑ ΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑΔΙΚΩΝ Γωρίζουμε ότι η δευτεροβάθμια εξίσωση με αρητική διακρίουσα δε έχει λύση στο σύολο R τω πραγματικώ
Διαβάστε περισσότεραΟρισµοί, ισότητα, µέτρο, άθροισµα µιγαδικών αριθµών. Μιγαδικό επίπεδο. Γεωµετρική παράσταση του αθροίσµατος µιγαδικών αριθµών.
Ορισµοί, ισότητα, µέτρο, άθροισµα µιγαδικώ αριθµώ Μιγαδικό επίπεδο Γεωµετρική παράσταση του αθροίσµατος µιγαδικώ αριθµώ Η προσπάθεια επιλύσεως εξισώσεω 3 ου βαθµού ( ax 3 βx γx δ 0) πραγµατικούς συτελεστές
Διαβάστε περισσότεραΣωστό - Λάθος Επαναληπτικές
ΘΕΩΡΙΑ ΣΤΑΤΙΣΤΙΚΗ ΟΛΩΝ ΤΩΝ ΕΤΩΝ ημιτελές(veron 6-4-206) ΠΡΟΣΟΧΗ! Επισημαίω ότι οι λύσεις ούτε πλήρεις είαι ούτε έχου διπλοελεγχθεί τουλάχιστο μέχρι τώρα.ετσι ο ααγώστης πρέπει α έχει υπόψη του ότι μπορεί
Διαβάστε περισσότεραΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
1. Τι λέγεται δειγματικός χώρος εός πειράματος τύχης. Το σύολο τω δυατώ αποτελεσμάτω λέγεται δειγματικός χώρος (sample space) και συμολίζεται συήθως με το γράμμα Ω. Α δηλαδή ω 1,ω 2,...,ω κ είαι τα δυατά
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να γωρίζει τη έοια της ακολουθίας, τους τρόπους που ορίζεται, τις διαφορές της από μία συάρτηση. Να γωρίζει τους ορισμούς της αριθμητικής και γεωμετρικής
Διαβάστε περισσότεραΑ. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ
ΜΑΘΗΜΑ Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποεότητα.: Πράξεις µε πραγµατικούς αριθµούς (Επααλήψεις- Συµπληρώσεις) Θεµατικές Εότητες:. Οι πραγµατικοί αριθµοί και οι πράξεις τους.. υάµεις πραγµατικώ αριθµώ..
Διαβάστε περισσότεραiii. Ακόμα, αλλάζουμε πρόσημα (όλα!) όποτε θέλουμε : α α, α β β α
. ΤΑΥΤΟΤΗΤΕΣ Ετός από τις λασσιές, θυμηθείτε υρίως τις δύο παραάτω : α β α β α αβ β α β α β α αβ β, αλλά αι τη γειότητα: α β α β α α β α β... αβ β, α,β,.. ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ (ορισμοί σχέσεις συμπεράσματα)
Διαβάστε περισσότερα5.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C
5 55 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C Εισαγωγή Η επίλυση τω εξισώσεω ου και 4ου βαθμού, η ααγκαστική επαφή με τους μιγαδικούς αριθμούς για τη έκφραση τω πραγματικώ ριζώ και η εξέλιξη του αλγεβρικού λογισμού
Διαβάστε περισσότεραΔ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. (Πρόοδοι) ΠΡΟΟΔΟΙ
ΠΡΟΟΔΟΙ Οι πρόοδοι αποτελού µια ειδική κατηγορία τω ακολουθιώ και είαι τριώ ειδώ : αριθµητικές, αρµοικές και γεωµετρικές. ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ (ΘΕΩΡΙΑ) Ορισµός Μια ακολουθία αριθµώ α, α,, α, α +, θα λέµε
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ Γενικές έννοιες
ΣΤΑΤΙΣΤΙΚΗ Γειές έοιες Στατιστιή είαι ο λάδος τω μαθηματιώ, ο οποίος ως έργο έχει τη συγέτρωση στοιχείω, τη ταξιόμησή τους αι τη παρουσίασή τους σε ατάλληλη μορφή, ώστε α μπορού α ααλυθού αι α ερμηευθού
Διαβάστε περισσότερα5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ
5. ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται γεωµετρική πρόοδος, α και µόο α κάθε όρος της προκύπτει από το προηγούµεό του µε πολλαπλασιασµό επί το ίδιο πάτοτε µη µηδεικό αριθµό.. Μαθηµατική
Διαβάστε περισσότερα2.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ R
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ 5 5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ R Εισαγωγή Η επίλυση τω εξισώσεω ου και 4ου βαθμού, η ααγκαστική επαφή με τους μιγαδικούς αριθμούς για τη έκφραση τω πραγματικώ ριζώ και η εξέλιξη του αλγεβρικού
Διαβάστε περισσότεραΓ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου
Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Μαθηματιά Γειής Παιδείας Γ Λυείου Δημήτρης Αργυράης Γεράσιμος Κουτσαδρέας Μαθηματιά Γειής Παιδείας Στατιστιή Γ. Λυείου ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ
Διαβάστε περισσότεραΙ δ ι ο τ η τ ε ς Π ρ ο σ θ ε σ η ς - Π ο λ λ α π λ α σ ι α σ μ ο υ ΙΔΙΟΤΗΤΑ ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 Π ρ α γ μ α τ ι κ ο ι Α ρ ι θ μ ο ι : Υ π ο σ υ ο λ α του Το συολο τω φυσικω 3. αριθμω: Να δειχτει οτι = α {0,1,,3, } + 110 0α. Ποτε ισχυει το ισο; Το συολο τω. A ακεραιω α, β θετικοι
Διαβάστε περισσότεραΓΙΑ ΜΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Περιοδικό ΕΥΚΕΙΔΗ Β Ε.Μ.Ε. (τεύχος 7) ΕΡΩΤΗΕΙ ΚΑΤΑΝΟΗΗ ΓΙΑ ΜΙΑ ΕΠΑΝΑΗΨΗ ΤΗΝ ΥΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ Α) Να χαρακτηρίσετε τις παρακάτω προτάσεις με () α είαι σωστές και με () α είαι λάθος, αιτιολογώτας
Διαβάστε περισσότεραΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ. 1. Τι ονομάζουμε σύνολο Μιγαδικών Αριθμών; Τι ονομάζουμε πραγματικό μέρος - φανταστικό μέρος ενός μιγαδικού αριθμού z = α + βi.
ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Τι οομάζουμε σύολο Μιγαδικώ Αριθμώ; Τι οομάζουμε πραγματικό μέρος - φαταστικό μέρος εός μιγαδικού αριθμού α + βi. Σύολο τω μιγαδικώ αριθμώ οομάζουμε έα υπερσύολο τω
Διαβάστε περισσότερα(Καταληκτική ημερομηνία αποστολής 15/11/2005)
η Εργασία 005-006 (Καταληκτική ημερομηία αποστολής 5//005) Άσκηση (0 μοάδες). (α) Δείξτε αλγεβρικά πώς βρίσκοται δύο διαύσματα A και B, εά είαι γωστά το άθροισμά τους S και η διαφορά τους D (β) Βρείτε
Διαβάστε περισσότερατις διαφορετικές μεταξύ τους τιμές της Y ( λ ν )
Διδιάστατες Καταομές Διδιάστατες Καταομές Πίαας συοτήτω διδιάστατης αταομής Θεωρούμε δύο τυαίες μεταβητές X, Y αι ζεύγη παρατηρήσεω,,,,,, από δείγμα μεγέθους Τόσο τα,,, όσο αι τα,,, δε είαι απαραιτήτως
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια
Διαβάστε περισσότεραΤι είναι εκτός ύλης. Σχολικό έτος
Τι είαι εκτός ύλης. Σχολικό έτος 06-07 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε. Το Λεξιλόγιο της Λογικής...9 Ε. Σύολα...3 ΚΕΦΑΛΑΙΟ o: Πιθαότητες. Δειγματικός Χώρος - Εδεχόμεα...0. Έοια της Πιθαότητας...9 ΚΕΦΑΛΑΙΟ
Διαβάστε περισσότερα1. [0,+ , >0, ) 2. , >0, x ( )
Σελίδα 1 από 5 ΝΙΟΣΤΕΣ ΡΙΖΕΣ ΤΑ ΣΥΜΒΟΛΑ α, α ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ του Ατώη Κυριακόπουλου 1 ΡΙΖΕΣ ΣΤΟ ΣΥΝΟΛΟ R = [, ) Θεώρηµα και ορισµός οθέτος, εός πραγµατικού αριθµού α και εός φυσικού αριθµού >, υπάρχει έας
Διαβάστε περισσότεραΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ
ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο ΜΙΓΑΔΙΚΟΙ - ΜΕΘΟΔΟΛΟΓΙΑ κ Για α βρούµε τη δύαµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωα µε τη ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ και υ = 0,,, οπότε i κ 4ρ+
Διαβάστε περισσότεραΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ δ υ α σ τ ι κ ή Πειραιάς 7 Μάθημα 8ο ΣΥΝΔΥΑΣΤΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ Μ. Κούτρας Συδυαστική 7-8 8 Το διωυμικό θεώρημα μπορεί α αποτελέσει τη βάση για τη απόδειξη
Διαβάστε περισσότερα= 2. iii) Αν το Q(χ) είναι περιττού βαθµού, βρείτε το άθροισµα των συντελεστών των άρτιων δυνάµεων του χ.
Σύλλογος Θετιών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του αθηγητή: Βασίλη Ξανθόπουλου Μαθηµατιά : Τάξη: Β ράµα 3 Απριλίου 11 Θέµα 1 ο ίνονται τα πολυώνυµα P(x) αι Q(x) ώστε η εξίσωση P (x) + Q (x) = (1)
Διαβάστε περισσότεραΓυμνάσιο Μαθηματικά Τάξη B
113 Θέματα εξετάσεω περιόδου Μαΐου-Ιουίου στα Μαθηματικά Τάξη B! 114 a. Να διατυπώσετε το ορισμό της δύαμης α με βάση το ρητό α και εκθέτη το φυσικό αριθμό > 1. b. Να συμπληρωθού οι παρακάτω τύποι, δυάμεις
Διαβάστε περισσότεραείναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους v,. Συχνότητα (απόλυτη) νi
ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός λέγεται έα σύολο που θέλουμε α εξετάσουμε τα στοιχεία του ως προς έα ή περισσότερα χαρακτηριστικά τους Μεταβλητές λέγοται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε
Διαβάστε περισσότεραΜΕΤΡΑ ΘΕΣΗΣ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ
Παγόσμιο χωριό γώσης 0 ο ΜΑΘΗΜΑ ΕΝΟΤΗΤΑ 2.3. ΜΕΤΡΑ ΘΕΣΗΣ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ Σοπός: Στη εότητα αυτή παρουσιάζοται τα μέτρα θέσης αι τα μέτρα διασποράς. Ο ορισμός τους αι διάφοροι μέθοδοι υπολογισμού. Γίεται
Διαβάστε περισσότεραΑκολουθίες Αριθµητική Γεωµετρική Πρόοδος
Ακολουθίες Αριθµητική Γεωµετρική Πρόοδος Μία συάρτηση α µε πεδίο ορισµού το Ν * λέγεται ακολουθία και συµβολίζεται µε (α ) δηλ. a : N * R : α = α( ) Ο α 1 λέγεται πρώτος όρος της ακολουθίας, ο α δεύτερος
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ. Η διαίρεση στους φυσικούς αριθμούς
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ Η διαίρεση στους φυσικούς αριθμούς 12 Η διαίρεση στους φυσικούς αριθμούς 12 Διερεύηση 1. 1. Έας χώρος στάθμευσης έχει 21 σειρές, καθεμιά από τις οποίες έχει 8 θέσεις.
Διαβάστε περισσότεραΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ
ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Ρωτήσαμε 50 μαθητές μιας τάξης για το αριθμό τω αδελφώ τους Οι απατήσεις που πήραμε είαι: 0,,,,4,5 Α v, v, v, v4, v5, v 6 είαι οι ατίστοιχες συχότητες τους
Διαβάστε περισσότερα11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Διαβάστε περισσότερα5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41.
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α 4. Έστω Ω { ω, ω, ω, ω 4 } ο δειγµατικός χώρος εός πειράµατος τύχης και τα εδεχόµεα Α {ω, ω }, Β {ω, ω 4 } + Α είαι P(A B) και Ρ( Β Α ), όπου θετικός ακέραιος τότε + 4 Να αποδείξετε
Διαβάστε περισσότεραlim f (x) = +. ΣΗΜΕΙΩΣΕΙΣ Μη πεπερασμένο όριο στο x 0 R
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμέο Όριο στο R - Κεφ..7: Όρια Συάρτησης
Διαβάστε περισσότεραΣ Τ Α Τ Ι Σ Τ Ι Κ Η Μέτρα Θέσης
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Μέτρα Θέσης. Ποιους ορισμούς πρέπει α ξέρω; Τι οομάζουμε αι πώς συμβολίζεται: η επιρατούσα τιμή μιας μεταβλητής ; Οομάζεται η τιμή της μεταβλητής, που παρουσιάζει
Διαβάστε περισσότεραΓραπτές ανακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις
Γραπτές αακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις Δρ. Πααγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Για το υπολογισμό του βαθμού της ετήσιας επίδοσης τω
Διαβάστε περισσότεραΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ» 2 o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 2013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο ) ΘΕΜΑ Α 1. α) Απόλυτη συχότητα οομάζεται ο φυσικός αριθμός που μας δείχει πόσες φορές εμφαίζεται η τιμή
Διαβάστε περισσότεραΠαρατηρήσεις 1 Για α ααζητήσουµε το όριο της f στο, πρέπει η f α ορίζεται όσο θέλουµε κοτά στο, δηλαδή η f α είαι ορισµέη σ έα σύολο της µορφής ( α, )
Η έοια του ορίου Όριο συάρτησης Ότα οι τιµές µιας συάρτησης f προσεγγίζου όσο θέλουµε έα πραγµατικό αριθµό l, καθώς το προσεγγίζει µε οποιοδήποτε τρόπο το αριθµό, τότε γράφουµε lim f() = l και διαβάζουµε
Διαβάστε περισσότερα4. * Αν α, β, γ, διαδοχικοί όροι αριθμητικής προόδου τότε β - α = γ - β. Σ Λ
Κεφάλαιο 3ο: ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ Ερωτήσεις του τύπου Σωστό-Λάθος. * Ο ιοστός όρος α μιας αριθμητικής προόδου με διαφορά ω είαι α = α + ( - ) ω. Σ Λ (α + α ). * Το άθροισμα τω πρώτω όρω μιας αριθμητικής
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΙΟΥΝΙΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Διαβάστε περισσότεραΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ορισµοί. Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 )
ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ 1 ορισµοί Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 ) Γησίως αύξουσα: σε έα διάστηµα του πεδίου ορισµού της λέγεται µια συάρτηση f ότα για κάθε χ 1,χ 2 µε χ 1
Διαβάστε περισσότεραΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΘΟΔΟΛΟΓΙΑ
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΟΡΙΣΜΟΙ ΠΡΑΞΕΙΣ ΣΥΖΥΓΕΙΣ ΜΕΤΡΟ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΘΟΔΟΣ Για α υπολογίσουμε δυάμεις με ακέραιο εκθέτη σε παράσταση με i χρησιμοποιούμε γωστές ταυτότητες και έχουμε υπόψη ότι: i. v v- = με ακέραιο
Διαβάστε περισσότερα4.2 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
. ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ Ασκήσεις σχολικού βιβλίου σελίδας 9 0 A Οµάδας.i) Να κάετε τη διαίρεση ( x + 6x 7x+ 0 ) : ( x+ ) και α γράψετε τη ταυτότητα της διαίρεσης. x + 6x 7x+ 0 x+ x 9x + + x + 9x 8x+ 0 + 8x+
Διαβάστε περισσότεραΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Τι οομάζεται συάρτηση Συάρτηση uncton είαι μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α ατιστοιχίζεται σε έα αριβώς στοιχείο άποιου
Διαβάστε περισσότερα1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x
ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 7 6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ Στο σχήμ 4 έχουμε τη γρφιή πράστση μις συάρτησης οτά στο Πρτηρούμε ότι, θώς το ιούμεο με οποιοδήποτε τρόπο πάω στο άξο πλησιάζει το πργμτιό ριθμό, οι
Διαβάστε περισσότεραΑ. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2
Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ ΕΙΔΗ ΕΞΙΣΩΣΗΣ ( ΔΙΕΡΕΥΝΗΣΗ ΕΞΙΣΩΣΗΣ): i. αχ=β µε α 0 έχει µία λύση ii. 0χ=β µε β 0 αδύατη εξίσωση ( καµία λύση ) iii. 0χ=0 αόριστη εξίσωση ( άπειρες λύσεις ) ΕΙΔΗ ΣΥΣΤΗΜΑΤΟΣ (ΔΙΕΡΕΥΝΗΣΗ
Διαβάστε περισσότεραΣυνδυαστική Ι. Περιληπτική Θεωρία Τμήμα κ. Οικονόμου. Χατζηδάκης Αλέξανδρος
Συδυαστιή Ι Περιληπτιή Θεωρία Τμήμα. Οιοόμου Χατζηδάης Αλέξαδρος Παεπιστήμιο Αθηώ - Τμήμα Μαθηματιώ Χειμεριό Εξάμηο 2009-2010 # μεταθέσεω! # μη επααλ. Διατάξεω ()! ( )! # επααλ. Διατάξεω # μη επααλ. Συδυασμώ
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΕΡΟΣ 2ο Γυμνάσιο
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΕΡΟΣ 2ο υμάσιο 164 1 α. Τι λέμε -οστή δύαμη εός αριθμού α; β. Ορισμοί και ιδιότητες τω δυάμεω. Κατασκευάστε ορθογώιο τρίγωο ΑΒ α. ράψτε το πυθαγόρειο θεώρημα και τη σχέση που το εκφράζει
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται
Διαβάστε περισσότεραΜαθηματικά για την Α τάξη του Λυκείου
Μθημτιά Α Λυείου Μθημτιά γι τη Α τάξη του Λυείου Α Νιοστή ρίζ πργμτιού ριθμού. Κρδμίτσης Σπύρος ΟΡΙΣΜΟΣ Η ιοστή ρίζ θετιός έριος εός μη ρητιού ριθμού συμολίζετι με ι είι ο μη ρητιός ριθμός που ότ υψωθεί
Διαβάστε περισσότεραΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών z για τους οποίους ισχύει:
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ
Διαβάστε περισσότεραΣΥΝΔΥΑΣΜΟΙ Ορισμός Συνδυασμός ν στοιχείων ανά κ είναι μια μη διατεταγμένη συλλογή κ στοιχείων από τα ν.
13/10/2010 ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συδυασμός στοιχείω αά κ είαι μια μη διατεταγμέη συλλογή κ στοιχείω από τα. Παράδειγμα 1 Οι συδυασμοί τω τριώ γραμμάτω Α,Β,Γ αά έα είαι οι εξής τρεις: Α, Β, Γ. Οι συδυασμοί
Διαβάστε περισσότεραΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ
ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ ΣΧΟΛΙΑ : Είαι γωστό ότι για µια συεχή συάρτηση σε έα διάστηµα, το ολοκλήρωµα F ορίζει έα πραγµατικό αριθµό όπου o είαι έα οποιοδήποτε σηµείο του και α έα αυθαίρετο
Διαβάστε περισσότεραΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ
ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ ΜΑΪΟΥ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι ο ος όρος µιας αριθµητικής προόδου µε πρώτο όρο α 1 και διαφορά ω είαι α = α 1 + (-1)ω. Μοάδες 7 Β. Να γράψετε
Διαβάστε περισσότερα1. * Η ακολουθία είναι µια συνάρτηση µε πεδίο ορισµού το σύνολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R
Ερωτήσεις πολλαπλής επιλογής 1. * Η ακολουθία είαι µια συάρτηση µε πεδίο ορισµού το σύολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R. * Η γραφική παράσταση µιας ακολουθίας είαι Α. Μια ευθεία γραµµή Β. Μια παραβολή Γ. Μια
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 Ο : ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Η ιδιότητα α+ β = β+ α λέγεται.. 2. Η ιδιότητα α ( β γ) ( ) + + = α+ β + γ λέγεται. 3. Ο αριθμός 0 είναι το..της πρόσθεσης φυσικών αριθμών αφού ισχύει:
Διαβάστε περισσότερα2.3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ. 1. Μέση τιµή x = Σταθµικός Μέσος x = 3. ιάµεσος (δ) ενός δείγµατος ν παρατηρήσεων, οι οποίες έχουν διαταχθεί σε
.3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ ΘΕΩΡΙΑ. Μέση τιµή x = x = x = + + + t t... t = x + x +... + x + +... + x κ κ = f x κ t κ κ = κ κ x = κ x. Σταθµικός Μέσος x = xw + x w +... + x w w + w +... + w = x w w όπου
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου
Επααληπτικό Διαγώισμα Μαθηματικώ Γεικής Παιδείας Γ Λυκείου Θέμα A Α.α) Τι οομάζουμε συάρτηση και τι οομάζουμε πραγματική συάρτηση πραγματικής μεταβλητής; β) Τι λέγεται τιμή μιας συάρτησης f στο χ ; γ)
Διαβάστε περισσότεραΜΑΘΗΜΑ Η έννοια του µιγαδικού αριθµού Πράξεις
ΜΑΘΗΜΑ.. Η έοια του µιγαδικού αριθµού Πράξεις Θεωρία - Σχόλια - Μέθοδοι - Ασκήσεις α + βi - i α + βi i (β - αi ) ΘΕΩΡΙΑ. Ύπαρξη του i εχόµαστε ότι υπάρχει αριθµός i, µε τη ιδιότητα φαταστική µοάδα. i,
Διαβάστε περισσότερα3 ΠΡΟΟΔΟΙ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ
3 ΠΡΟΟΔΟΙ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 3. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1 1 1 1 1 1. Η ακολουθία,,,,,... είαι αριθμητική πρόοδος. 4 6 8 10.
Διαβάστε περισσότερα{[ 140,150 ),[ 160,170 ),...,[ 200, 210]
Σημειώσεις στις Πιθαότητες Πείραμα τύχης και πιθαότητα Έα φυσικό φαιόμεο με χαρακτηριστικά που δε μπορούμε α τα προβλέψουμε, οομάζεται στοχαστικό ή τυχαίο Για παράδειγμα το ύψος τω κυμάτω στη θάλασσα,
Διαβάστε περισσότεραΑ. ΓΛΩΣΣΑ ΚΑΙ ΛΟΓΟΤΕΧΝΙΑ
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2006 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος: ΠΕ 70 ΔΑΣΚΑΛΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Γωστικό ατικείμεο) Σάββατο 27-1-2007
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ
ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ 1. Α. Να βρεθού οι κ,λ R για τους οποίους είαι ίσα τα πολυώυµα ( λ + 1) x ( κ ) x λ + 1 (x) = και Q(x) = κx λx + κ Β. Να βρείτε τους πραγµατικούς αριθµούς α, β, γ R για τους
Διαβάστε περισσότερα4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ
1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας
Διαβάστε περισσότεραa lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x)
7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( ) ΒΑΣΙΚΑ ΟΡΙΑ + - - a v α άρτιος α περιττός 0 ar * ΠΑΡΑΤΗΡΗΣΗ : Εώ α f() < g() κοτά στο 0 τότε f() g() ότα + εώ f()
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΚΕΦΑΛΑΙΟ ο. Τι οοµάζεται συάρτηση ; Είαι µια διαδικασία µε τη οποία κάθε στοιχείο εός συόλου Α ατιστοιχίζεται σε έα ακριβώς στοιχείο κάποιου άλλου συόλου Β.. Ποιες είαι οι κυριότερες γραφικές παραστάσεις
Διαβάστε περισσότερα3 ΠΡΟΟΔΟΙ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΠΡΟΟΔΟΙ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. ΑΚΟΛΟΥΘΙΕΣ. Να βρείτε τους τέσσερις πρώτους όρους τω ακολουθιώ: α) α = + + β) α = 4 γ) α = δ) α = (-) + +. + 4 Να αποδείξετε ότι όλοι οι όροι της ακολουθίας α =
Διαβάστε περισσότεραΜαθηµατική Επαγωγή 175.
Μαθηµατική Επαγωγή 75. Μαθηµατική Επαγωγή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Στο κεφάλαιο τω προόδω έχει αποδειχθεί ότι ο ισχυρισµός v( v+ ) P( v ):+ + 3 +... + v, v N είαι αληθής (ως άθροισµα
Διαβάστε περισσότεραΜΙΓΑΔΙΚΟΙ 9o ΓΕΛ ΠΕΡΙΣΤΕΡΙΟΥ είναι τέλεια, να υπολογίσετε την τιμή της παράστασης: Α = (1 + i) v - (1 - i) v. 15. Αν z μιγαδικός και f (ν) = i
Να βρεθού οι πραγματικοί αριθμοί κ,λ για τους οποίους οι μιγαδικοί = 4 κ + λ + 7 κ και w = 7 (λ ) α είαι ίσοι Να βρεθού οι κ, λr ώστε ο = (8κ + κ) + 4λ + ( ) α είαι ίσος με το μηδέ Να βρείτε για ποιες
Διαβάστε περισσότεραΓυμνάσιο Μαθηματικά Τάξη B
113 Θέματα εξετάσεω περιόδου Μαΐου-Ιουίου στα Μαθηματικά Τάξη B! taexeiola.blogspot.com 6 ο ΥΜΝΑΣΙΟ ΡΟΔΟΥ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ, ΤΑΞΗ Β' ΥΜΝΑΣΙΟΥ, ΡΟΔΟΣ
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Α.. Α.. Α.. A.4. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία:
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικώ της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Τετάρτη, 3 Μα ου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α. Α οι συαρτήσεις f, g είαι παραγωγίσιμες στο
Διαβάστε περισσότερα1. * Δύο κανονικά οκτάγωνα είναι όμοια. Σ Λ 2. * Δύο κανονικά πολύγωνα με τον ίδιο αριθμό πλευρών είναι όμοια.
Κεφάλαιο 11: ΚΑΝΟΝΙΚΑ ΠΟΥΓΩΝΑ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Δύο καοικά οκτάγωα είαι όμοια.. * Δύο καοικά πολύγωα με το ίδιο αριθμό πλευρώ είαι όμοια.. * Έα κυρτό πολύγωο που έχει όλες του τις
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ - 11 - ΚΕΦΑΛΑΙΟ 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ Έστω Ρ(ν) ένας ισχυρισµός, ο οποίος αναφέρεται στους θετικούς ακέραιους Αν: i) o ισχυρισµός είναι αληθής για τον ακέραιο 1,
Διαβάστε περισσότεραΕρωτήσεις πολλαπλής επιλογής
Ερωτήσεις πολλαπλής επιλογής 1. * Η µέθοδος της µαθηµατικής επαγωγής χρησιµοποιείται για την απόδειξη προτάσεων Ρ (ν), όταν Α. ν R Β. ν Q Γ. ν R*. ν N Ε. κανένα από τα προηγούµενα 2. * Για τους ακεραίους
Διαβάστε περισσότεραΗ Ευκλείδεια διαίρεση
1 Η Ευκλείδεια διαίρεση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Αποδεικνύεται ότι για οποιουσδήποτε ακέραιους α και β, β 0, ισχύει το παρακάτω θεώρηµα και διατυπώνεται ως εξής : Αν α και β ακέραιοι µε β
Διαβάστε περισσότεραΠαρατηρήσεις. Παρατήρηση Ισχύουν οι επόµενες ισότητες: Προσέχουµε: Αν α 0και ν θετικός ακέραιος τότε η µη αρνητική ρίζα της εξίσωσης.
ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Α κι θετικός κέριος τότε η µη ρητική ρίζ της εξίσωσης λέγετι ιοστή ρίζ του κι συµολίζετι. ηλδή = Γράφουµε: = = ( ) = κι = Πρτηρήσεις. Ο συµολισµός έχει όηµ µόο ότ. Στη πράστση
Διαβάστε περισσότερα0..1 ΒΑΣΙΚΕΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΝΝΟΙΕΣ
Εισαγωγικό Κεφάλαιο: Ρητοί Αριθµοί ΜΑΘΗΜΑ 0 Υποεότητα 1: Βασικές Επααληπτικές Έοιες (Επααλήψεις-Συµπληρώσεις) Θεµατικές Εότητες: 1. Ρητοί αριθµοί-βασικές επααληπτικές έοιες.. Πρόσθεση ρητώ αριθµώ. 3. Άθροισµα
Διαβάστε περισσότεραΓωνία και κεντρική γωνία κανονικού πολυγώνου
ΜΕΡΟΣ Β 3.2 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 327 3.2 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ Κατασκευή καοικώ πολυγώω Η διαδικασία κατασκευής εός καοικού πολυγώου µε πλευρές (καοικό -γωο) ακολουθεί τα εξής βήματα: 1ο Βήμα: 3 Υπολογίζουμε
Διαβάστε περισσότερα