Ενότητα 7: Ανάλυση ιασποράς µε έναν παράγοντα (One way Analysis of Variance)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ενότητα 7: Ανάλυση ιασποράς µε έναν παράγοντα (One way Analysis of Variance)"

Transcript

1 Ενότητα 7: Ανάλυση ιασποράς ε έναν παράγοντα Oe wy yss of Vrce Σε αυτή την ενότητα θα εξετάσουε ένα ειδικό πρόβληα γραικής παλινδρόησης το ο- ποίο εφανίζεται αρκετά συχνά στις εφαρογές. Συγκεκριένα θέλουε να διερευνήσουε πώς ε- πηρεάζεται ία sced εταβλητή Υ από ία κατηγορική εταβλητή X ord ή o η οποία λαβάνει τιές. Η εταβλητή Χ καλείται και παράγοντας fcor ε στάθες. Για το σκοπό αυτό λαβάνουε τυχαία δείγατα της εταβλητής : Θεωρούε το οντέλο... όταν ο παράγοντας X βρίσκεται στην η στάθη... όταν ο παράγοντας X βρίσκεται στην η στάθη... όταν ο παράγοντας X βρίσκεται στην -οστή στάθη ε... ε X στην η στάθη... X στην η στάθη ε... X στην -οστή στάθη όπου τα «σφάλατα» ε είναι ανεξάρτητες τ.. που ακολουθούν N0σ. Ουσιαστικά θεωρούε ότι η εταβλητή Υ ~ Ν σ όταν ο παράγοντας X βρίσκεται στην -στάθη. Μας ενδιαφέρει να εκτιήσουε τα και το σ και να ελέγξουε αν είναι ίσα ή υπάρχει διαφορά εταξύ τους. Με άλλα λόγια θέλουε να ελέγξουε αν η εταβλητή Υ έχει διαφορετική «συπεριφορά» στις διαφορετικές στάθες της X. Το συγκεκριένο πρόβληα πορεί να θεωρηθεί και ως ία επέκταση του -τεστ που χρησιοποιείται για τον έλεγχο της ισότητας των έσων δύο ανεξάρτητων κανονικών πληθυσών. Όπως έχει ήδη αναφερθεί το παραπάνω οντέλο πορεί να θεωρηθεί και ως ια ειδική περίπτωση ενός πολλαπλού γραικού οντέλου. Πράγατι όλες οι παραπάνω σχέσεις γράφονται σε ία σχέση ως εξής: X ε όπου 0 0 ε X O O 0 0 O 0 0 ε ε ε ε. ε ε όπου ε ~ Ν0σ Ι και εποένως έχουε ένα πολλαπλό γραικό οντέλο ε ειδικής ορφής πίνακα σχεδιασού Χ. Bouss.V. 00 Σηειώσεις αθήατος «Στατιστικά Προγράατα» Τήα Στατ. & Ασφ. Επιστήης Πανεπιστήιο Πειραιώς 8

2 Bouss.V. 00 Σηειώσεις αθήατος «Στατιστικά Προγράατα» Τήα Στατ. & Ασφ. Επιστήης Πανεπιστήιο Πειραιώς Εκτίηση των παραέτρων και σ Για την εκτίηση των παραέτρων του οντέλου πορούε να χρησιοποιήσουε τους γενικούς τύπους που ισχύουν για το γενικό πολλαπλό γραικό οντέλο βλ. Ενότητα 6 ή να εργαστούε εξαρχής αναζητώντας τις ε..π. ή ισοδύναα τις εκτιήτριες ελαχίστων τετραγώνων. Σε κάθε περίπτωση είναι εύκολο να διαπιστώσουε ότι οι εκτιήτριες των παραέτρων έχουν την α- κόλουθη απλή ορφή... ι. Όλες οι ποσότητες που χρησιοποιήθηκαν στο πολλαπλό γραικό οντέλο πορούν να χρησιοποιηθούν και εδώ. Για παράδειγα οι προσαροσένες τιές των Υ και τα κατάλοιπα θα είναι X ε και συγκεκριένα ε. Ως εκτιήτρια της διασποράς σ των σφαλάτων πορούε να θεωρήσουε όπως και στο πολλαπλό γραικό οντέλο την σ. 7.. Έλεγχοι υποθέσεων και δ.ε. για τις παραέτρους του οντέλου. Είναι εύκολο να διαπιστωθεί ότι ~ N σ και εποένως ~ από όπου προκύπτει ότι το είναι ένα δ.ε. για το συντελεστού. Το συγκεκριένο δ.ε. χρησιοποιεί ως εκτίηση του σ την η οποία βασίζεται στις παρατηρήσεις από όλες τις στάθες του παράγοντα pooed ese. Η εκτιήτρια αυτή είναι η καλύτερη που πορούε να πάρουε αρκεί η διασπορά των σφαλάτων να είναι σταθερή και ίση ε σ σε όλες τις στάθες του παράγοντα Χ. Εάν δεν είαστε σίγουροι ότι κάτι τέτοιο συβαίνει πορούε να εκτιήσουε την διασπορά των σφαλάτων ξεχωριστά σε κάθε στάθη er ese και να πάρουε το δ.ε για το συντελεστού. Σε αυτό το οντέλο ας ενδιαφέρει ο έλεγχος Η 0 : για. Επειδή ~ N σ προκύπτει το δ.ε. συντελεστού για το

3 ενώ θα απορρίπτεται η Η 0 : έναντι της Η : όταν T > όπου T ~ H0 ε αντίστοιχο p-vue για δείγα που έδωσε T p vue T > F. 7.. Ερηνεύοντας τη συνολική εταβλητότητα του οντέλου Το οντέλο που εξετάζουε αποτελεί υποπερίπτωση του πολλαπλού γραικού οντέλου και εποένως πορούε απευθείας και εδώ να πούε ότι η διασπορά των παρατηρήσεων χωρίζεται σε δύο αθροίσατα θα πορούσε εύκολα να αποδειχθεί και ανεξάρτητα τα οποία συβολίζονται και πάλι ε T E και R ή Tr αντίστοιχα το συβολίζεται και ε. Αν θεωρήσουε ότι οι παρατηρήσεις χωρίζονται σε οάδες ία για κάθε στάθη του παράγοντα τότε το E πορεί να θεωρηθεί ως η εταβλητότητα «εντός των οάδων» u of qures W Groups ενώ το R η εταβλητότητα «εταξύ των οάδων» u of qures Bewee Groups. Αποδεικνύεται εδώ εύκολα ότι E χ σ ~ σ σ ενώ όταν τότε αποδεικνύεται ότι Tr T ~ χ ~ χ. σ σ διαφορετικά ακολουθούν κάποιες η-κεντρικές κατανοές χι-τετράγωνο. Εποένως αν το πηλίκο Tr Tr F σ ~ F E E σ Tr και E είναι ανεξάρτητες. Αντίστοιχα ε το πολλαπλό γραικό οντέλο πορούε να κατασκευάσουε έναν έλεγχο για την υπόθεση Η 0 : δηλ. ότι η Υ συπεριφέρεται το ίδιο σε όλες της στάθες του παράγοντα άρα είναι ανεξάρτητη του παράγοντα. Θα απορρίπτεται η Η 0 όταν ε.σ. α Tr F > F : άνω -σηείο της κατανοής F ε και β.ε. E Στο πολλαπλό γραικό οντέλο ο ίδιος έλεγχος χρησιοποιείται για την υπόθεση b b b p- 0 ενώ εδώ για την κ όχι 0. Η διαφορά έδω είναι το έχουε ένα οντέλο χωρίς σταθερά ο πίνακας σχεδιασού X δεν έχει στην πρώτη στήλη ονάδες διότι Υ ε. Εάν όως θέσουε Σ 0 τότε το παραπάνω γράφεται ισοδύναα ως οντέλο ε σταθερά ως εξής Υ ε. στο οποίο το F-τεστ ελέγχει αν κ 0 δηλαδή. Bouss.V. 00 Σηειώσεις αθήατος «Στατιστικά Προγράατα» Τήα Στατ. & Ασφ. Επιστήης Πανεπιστήιο Πειραιώς 87

4 ε αντίστοιχο p-vue: Tr p vue FF E Όλες οι παραπάνω ποσότητες συνοψίζονται στον πίνακα ανάλυσης διασποράς NOV: ode u of qures df e qure F-Ro g. p-vue Bewee Tr Tr Tr Tr Groups Tr FF E E W E E Groups E To Τ 7.. Πολλαπλές συγκρίσεις Μία από τις κύριες επιδιώξεις ας στο οντέλο αυτό είναι να ελέγξουε αν η Υ παρουσιάζει διαφορετική συπεριφορά στις διάφορες στάθες του παράγοντα Χ. Μπορούε ε βάση το F-τεστ που είδαε παραπάνω να εξετάσουε την Η 0 :. Εάν απορριφθεί η συγκεκριένη υπόθεση ας ενδιαφέρει να εξετάσουε ποια διαφέρουν από τα υπόλοιπα. Για το σκοπό αυτό πορούε να κάνουε όλες τις ανά δύο συγκρίσεις των έσων πολλαπλές συγκρίσεις. Εάν έχουε στάθες τότε θα πρέπει να ελέγξουε υποθέσεις ισότητας έσων ανά δύο. Π.χ. αν πορούε να κάνουε όλους τους ελέγχους Η 0 : Η 0 : Η 0 : ε εναλλακτικές τις αφίπλευρες. Μπορούε να ελέγξουε κάθε ία από τις παραπάνω υ- ποθέσεις ξεχωριστά ε -ess σε ε.σ. ε τον τρόπο που είδαε στην Παράγραφο 7.. και στη συνέχεια να δούε ποιοι έσοι διαφέρουν και να τους κατατάξουε οαδοποιήσουε. Π.χ. αν απορρίψουε τις υποθέσεις Η 0 : και Η 0 : ενώ δεν απορρίψουε ότι Η 0 : τότε πορούε να πούε ότι ο έσος διαφέρει από τους άλλους δύο οι οποίοι πορεί να είναι ίσοι «πιθανές» οάδες από ίσους έσους: { {. Εάν σε άλλη περίπτωση απορρίψουε όνο την Η 0 : ενώ τότε ο διαφέρει από τον ενώ ο πορεί να είναι ίσος είτε ε τον είτε ε τον «πιθανές» οάδες από ίσους έσους: { {. Η παραπάνω διαδικασία κατά την οποία συγκρίνουε όλους τους έσους ανά δυο έλεγχος τo πλήθος υποθέσεων έσω -es κάθε φορά σε στάθη καλείται έθοδος D es gfc Dfferece. Η έθοδος αυτή έχει ένα ειονέκτηα: η πιθανότητα λανθασένης απόρριψης κάποιας από τις αυτές υποθέσεις δεν είναι αλλά αρκετά εγαλύτερη. Πράγατι αν είναι το ενδεχόενο να απορρίψουε την -υπόθεση τότε η πιθανότητα λανθασένης απόρριψης κάποιας από τις υποθέσεις ενώ θα είναι C C U UU I II Bouss.V. 00 Σηειώσεις αθήατος «Στατιστικά Προγράατα» Τήα Στατ. & Ασφ. Επιστήης Πανεπιστήιο Πειραιώς 88 C C C C θα ίσχυε ισότητα αν οι απορρίψεις είναι ανεξάρτητες που εδώ δεν είναι δηλαδή αρκετά εγαλύτερη του ειδικά για εγάλο. Μας ενδιαφέρει να γίνει η πολλαπλή σύγκριση έτσι ώστε ε πιθανότητα το πολύ να κάνουε τουλάχιστον ια λανθασένη απόρριψη στους ελέγχους δηλ. συνολική σφάλα τύπου Ι. Για το σκοπό αυτό έχουν προταθεί διάφορες έθοδοι. Στη συνέχεια θα εξετάσουε όνο δύο από αυτές: τη έθοδο Boferro και την έθοδο Tuey. Η έθοδος Boferro. Ένας απλός αλλά όχι τόσο αποτελεσατικός τρόπος για να παραείνει η σφάλα τύπου Ι στην πολλαπλή σύγκριση είναι να κάνουε κάθε έναν από τους ελέγχους

5 Bouss.V. 00 Σηειώσεις αθήατος «Στατιστικά Προγράατα» Τήα Στατ. & Ασφ. Επιστήης Πανεπιστήιο Πειραιώς 89 Η 0 : όχι σε ε.σ. α όπως στην έθοδο D αλλά σε ε.σ. ώστε η πιθανότητα λανθασένης απόρριψης τουλάχιστον ιας υπόθεσης να είναι UU U. Η παραπάνω έθοδος συνήθως προτιάται όταν το είναι ικρό. Ισοδύναα πορούε να διατηρήσουε το ίδιο ε.σ. σε κάθε έναν από τους ελέγχους αλλά να πολλαπλασιάσουε τα αρχικά p- vue που προκύπτουν από την έθοδο D ε. Έτσι αν ένας έλεγχος δίνει p-vue p 0 ε την έθοδο D θεωρούε ότι ε την έθοδο Boferro θα έχει p-vue p 0 ή καλύτερα { p 0. b. Η έθοδος Tuey. Η έθοδος αυτή βασίζεται στην κατανοή του τυποποιηένου εύρους από ανεξάρτητες κανονικές. Συγκεκριένα έστω Ζ Ζ... Ζ r ανεξάρτητες τ.. από την Ν0d και έ- στω D ία εκτιήτρια του d τ.. ανεξάρτητη των Ζ τέτοια ώστε ~ v d vd χ για κάποια παρά- ετρο v. Η κατανοή F Rrv του τυποποιηένου εύρους D R r r v r... {... x{. έχει ελετηθεί και έστω qrv τα άνω -σηεία της. Η έθοδος Tuey για ισοεγέθη δείγατα. Αν ισοεγέθη δείγατα στις στάθες του παράγοντα τότε οι τ..... είναι ανεξάρτητες τ.. και ακολουθούν Ν0 d σ. Επίσης αν επιλέξουε D τότε ~ d D χ και D ανεξ. των και εποένως σύφωνα και ε τα παραπάνω το τυποποιηένο εύρος D R { { x... {... x{ θα έχει γνωστή κατανοή την F R- και άνω -σηεία τα q. Εποένως q { { x. Είναι εύκολο τώρα να επαληθεύσουε ότι το ενδεχόενο στην παραπάνω πιθανότητα είναι ίσο ε το ενδεχόενο q για κάθε και άρα τελικά q κάθε για ή ισοδύναα q q κάθε για από όπου προκύπτει ένα πολλαπλό δ.ε. ή ένα σύνολο από ταυτόχρονα δ.ε. για τις διαφορές ε συνολικό σ.ε.. Επίσης αν απορρίψουε την υπόθεση όταν

6 T > q όπου T για η πιθανότητα να κάνουε τουλάχιστον ια λάθος απόρριψη στους ελέγχους ίση ε. Το p-vue του ελέγχου θα είναι για δείγα που έδωσε T p vue T > FR. Η έθοδος Tuey για ανισοεγέθη δείγατα. Η έθοδος Tuey πορεί να τροποποιηθεί ώστε να εφαρόζεται και στην περίπτωση που έχουε ανισοεγέθη δείγατα στις διάφορες στάθες του παράγοντα. Παρατηρούε ότι τώρα η τ.. δεν έχει διασπορά αλλά. Εφαρόζουε λοιπόν ακριβώς τα ίδια ε παραπάνω όνο που στη θέση του στα δ.ε. για το και στον αντίστοιχο έλεγχο χρησιοποιούε το. ηλαδή αντί του χρησιοποιούε τον αρονικό έσο των. Το πολλαπλό δ.ε. που προκύπτει θα έχει προσεγγιστικά συντελεστή επιστοσύνης. 7.. Έλεγχος οοσκεδαστικότητας των παρατηρήσεων Για να είναι αξιόπιστα όλα τα παραπάνω θα πρέπει τα σφάλατα ή ισοδύναα τα να έχουν την ίδια διασπορά σ. Εποένως θα πρέπει στα πλαίσια ελέγχου ορθότητας του οντέλου να εξετάσουε αν κάτι τέτοιο πράγατι ισχύει. Μπορούε και πάλι να χρησιοποιήσουε το evee s τεστ οοσκεδαστικότητας που έχουε χρησιοποιήσει για τον ίδιο σκοπό σε προηγούενη ενότητα κατά τον έλεγχο των έσων δύο ανεξάρτητων πληθυσών. Το τεστ αυτό βασίζεται στην ανάλυση διασποράς και εποένως τώρα είαστε σε θέση να το περιγράψουε. Βασίζεται στις τυχαίες εταβλητές W Αν τα Υ έχουν την ίδια διασπορά σε όλες τις στάθες τότε τα W θα έχουν την ίδια έση τιή σε όλες τις στάθες του παράγοντα Χ. Εποένως αρκεί να ελέγξουε αν οι τ.. W έχουν την ίδια έση τιή σε όλες τις στάθες του παράγοντα Χ. Αυτό πορεί εύκολα να γίνει ε την εθοδολογία που αναπτύχθηκε στην συγκεκριένη ενότητα ανάλυση διασποράς. Το evee τεστ ουσιαστικά είναι το F-ro τεστ του πίνακα NOV που αντιστοιχεί στο οντέλο ανάλυσης διασποράς της W ως προς τον παράγοντα X δηλ. βασίζεται στην στατιστική συνάρτηση Tr W W W F. EW W W Αν ε βάση αυτό το F-ro τεστ απορρίπτεται ότι ο θεωρητικός έσος της W είναι σταθερός σε όλες τις στάθες της Χ τότε απορρίπτεται ότι και η θεωρητική διασπορά της είναι σταθερή σε όλες τις στάθες της Χ. Ο έλεγχος αυτός είναι περισσότερο ευσταθής από άλλα παρόοια τεστ Bre Cocr Hrey στην περίπτωση η-κανονικότητας των παρατηρήσεων. Άσκηση. Σε ια έρευνα που έγινε στο πανεπιστήιο Μελβούρνης επελέγη τυχαία ένα δείγα α- ντρών και γυναικών διαφόρων ηλικιών το οποίο και υποβλήθηκε σε ένα τεστ αντοχής στον σωατικό πόνο. Στον ακόλουθο πίνακα δίνεται για κάθε ένα άτοο του δείγατος ο δείκτης αντοχής στον πόνο ο οποίος εξήχθη ε βάση το τεστ αυτό εγαλύτερος δείκτης σηαίνει εγαλύτερη αντοχή. Σε κάθε άτοο του δείγατος καταγράφεται επίσης και το φυσικό χρώα των αλλιών: ανοιχτό ξανθό σκούρο ξανθό ανοιχτό ελαχρινό σκούρο ελαχρινό. Έχει ενδιαφέρον να εξετάσουε αν υπάρχουν διαφορές στην έσο δείκτη αντοχής στον πόνο εταξύ των ατόων ε διαφορετικό χρώα αλλιού. Bouss.V. 00 Σηειώσεις αθήατος «Στατιστικά Προγράατα» Τήα Στατ. & Ασφ. Επιστήης Πανεπιστήιο Πειραιώς 90

7 Χρώα αλλιών είκτης αντοχής Χρώα αλλιών είκτης αντοχής Χρώα αλλιών είκτης αντοχής Χρώα αλλιών είκτης αντοχής ccve J. T. d Derc II F. H. 99. scs. Dee ubsg Frcsco Exercse 0.0. Για να ληφθεί ία πρώτη εικόνα κατασκευάστε ένα scerpo και ένα Boxpo του δείκτη αντοχής για κάθε στάθη του παράγοντα «χρώα αλλιών». Ο δείκτης φαίνεται να επηρεάζεται από το χρώα των αλλιών; Αν Υ είναι δείκτης αντοχής στον πόνο του -ατόου ε -χρώα αλλιών εφαρόστε το οντέλο ε ε ε ε παράγοντας «χρώα» στην η στάθη παράγοντας «χρώα» στην η στάθη παράγοντας «χρώα» στην η στάθη παράγοντας «χρώα» στην η στάθη ή συνοπτικά ε όπου είναι ο έσος δείκτης αντοχής ατόου ε χρώα αλλιού και τα «σφάλατα» ε είναι ανεξάρτητες τ.. που ακολουθούν N0σ. Εκτι- ήστε τα σηειακά και ε δ.ε. συντελεστού 9% το καθένα. Εκτιήστε την διασπορά των σφαλάτων. Ελέγξτε την υπόθεση Η 0 : σε ε.σ. %. Ο παράγοντας «χρώα αλλιών» επιδρά στο δείκτη αντοχής στον πόνο; Να κατασκευάσετε τα γραφήατα των δ.ε. 9% των. Βρείτε 9% δ.ε. για τη διαφορά και 9% δ.ε. για τη διαφορά. Το διαφέρει από το ; ε.σ. %. Το διαφέρει από το ; ε.σ. %. Να δοθούν ταυτόχρονα δ.ε. ε συνολικό σ.ε. 9% για τις διαφορές των ανά δύο ε τις εθόδους Boferro και b Tuey. Να γίνει οαδοποίηση των έσων ε τη έθοδο Tuey ώστε η συνολική πιθανότητα σφάλατος να είναι %. 6 Να ελέγξετε αν ο δείκτης αντοχής στον πόνο έχει πράγατι την ίδια διασπορά σ σε όλες τις στάθες του παράγοντα «χρώα αλλιών». 7 Θα πορούσαε σε αυτά τα δεδοένα να εφαρόσουε ένα απλό γραικό οντέλο; Λύση. Εισάγουε τις 9 περιπτώσεις στο σε δύο εταβλητές στήλες: HCOOR CORE Για το scerpo επιλέγουε : Grpscerpospe xs: CORE X xs: HCOOR. Για Boxpo: GrpsBoxpope: Vrbe: CORE Cegory xs: HCOOR CORE N CORE 0 HCOOR HCOOR Bouss.V. 00 Σηειώσεις αθήατος «Στατιστικά Προγράατα» Τήα Στατ. & Ασφ. Επιστήης Πανεπιστήιο Πειραιώς 9

8 Και από τα δύο γραφήατα φαίνεται να υπάρχει ία είωση του έσου δείκτη όσο πηγαίνουε από ξανθά σε ελαχρινά άτοα. εν πορούε όως άεσα να πούε ότι αυτή η είωση είναι στατιστικά σηαντική πορεί π.χ. να οφείλεται στο ότι το τυχαίο δείγα είναι ικρό. Επιλέγουε yzecopre esoe-wy NOV Depede s: CORE Fcor: HCOOR Opos: Cec Descrpve λαβάνεται ο πίνακας ε τα Descrpves: Descrpves CORE To 9% Cofdece Ierv for e N e d. Devo d. Error ower Boud Upper Boud u xu Ο οποίος περιέχει τις εκτιήσεις των καθώς και τα αντίστοιχα δ.ε. το καθένα συντελεστού 9% ε βάση τα er eses του σ. Ειδικότερα περιέχει τις ποσότητες N e d. Dev. d. Error owerupper Boud ± Ενώ η τελευταία γραή περιέχει τις ποσότητες To T T T ± όπου 0.0 Επίσης από την ανάλυση αυτή δίνεται και ο πίνακας NOV που περιγράψαε παραπάνω. NOV CORE Bewee Groups W Groups To u of qures df e qure F g Η διασπορά των σφαλάτων ως γνωστό εκτιάται από το E που δίνεται στον πίνακα NOV και είναι Αυτό είναι και το pooed ese της διασποράς σ. Ο έλεγχος της υπόθεσης Η 0 : έναντι της Η : διαφορετικά γίνεται χρησιοποιώντας το F - es του πίνακα NOV. Εάν ίσχυε η Η 0 η τιή F 6.79 θα έπρεπε να προέρχεται από την κατανοή F edecor ε και β.ε.. Το αντίστοιχο p-vue είναι όλις 0.00 χοντρικά όλις στο 0.00 των περιπτώσεων λαβάνουε ένα τόσο «ακραίο» δείγα υπό την Η 0 και εποένως απορρίπτουε την Η 0 ε.σ. %. Οι έσες τιές του δείκτη αντοχής στον πόνο δεν είναι ίσες σε όλες τις στάθες του παράγοντα «χρώα αλλιών» Επιλέγουε Grpserror brsspe vrbe: CORE Cegory xs: HCOOR c.. for e eve: 9% από όπου λαβάνουε το γράφηα ε τα δ.ε. για τα το καθένα συντελεστού 9% ε βάση τα dvdu vrce eses. Bouss.V. 00 Σηειώσεις αθήατος «Στατιστικά Προγράατα» Τήα Στατ. & Ασφ. Επιστήης Πανεπιστήιο Πειραιώς 9

9 % CI CORE N HCOOR Από το γράφηα φαίνεται και πάλι ια τάση είωσης του έσου δείκτη αντοχής όσο πάε προς ελαχρινότερα άτοα. Θα πορούσε όως π.χ. ο έσος δείκτης να είναι ίσος εταξύ των ξανθών στάθη και ίσος εταξύ των ελαχρινών ατόων στάθη ενώ να υπάρχει διαφορά εταξύ των ξανθών και ελαχρινών. Για να πορέσουε να κάνουε ια τέτοια «οαδοποίηση» των έσων θα πρέπει να προχωρήσουε σε κάποια έθοδο πολλαπλών συγκρίσεων. Επιλέγουε yzecopre esoe-wy NOV Depede s: CORE Fcor: HCOOR : os Hoc: D απ όπου λαβάνουε τις συγκρίσεις όλων των έσων ανά δύο κάθε δ.ε. για τη διαφορά των έσων είναι συντελεστού 9%: Depede Vrbe: CORE D upe Coprsos I HCOOR J HCOOR *. Te e dfferece s sgfc e.0 eve. e Dfferece 9% Cofdece Ierv I-J d. Error g. ower Boud Upper Boud * * * * * * Ο παραπάνω πίνακας περιέχει σε κάθε γραή τις ποσότητες e Dfferece s.e. g. B UB F ± s. e. s. e. Ένα 9% δ.ε. για τη διαφορά είναι το ενώ ένα 9% δ.ε. για τη διαφορά είναι το Το διαφέρει από το σε ε.σ. % διότι το αντίστοιχο p-vue είναι 0.00 ενώ δεν έχουε αρκετά στοιχεία για να πούε ότι το διαφέρει από το p-vue οι έλεγχοι πορούν να γίνουν σε ε.σ. % ε βάση και τα δ.ε. συντ. 9%. Επιλέγουε yzecopre esoe-wy NOV Depede s: CORE Fcor: HCOOR : os Hoc: Boferro Tuey απ όπου λαβάνουε τις συγκρίσεις όλων των έσων ανά δύο ε την έθοδο Boferro ένα σύνολο από ταυτόχρονα δ.ε. για τις διαφορές ε συ- Bouss.V. 00 Σηειώσεις αθήατος «Στατιστικά Προγράατα» Τήα Στατ. & Ασφ. Επιστήης Πανεπιστήιο Πειραιώς 9

10 νολικό συντελεστή επιστοσύνης τουλάχιστον και τη έθοδο Tuey ταυτόχρονα δ.ε. ε συνολικό συντελεστή επιστοσύνης περίπου για ανισοεγέθη δείγατα. Depede Vrbe: CORE upe Coprsos Tuey HD Boferro I HCOOR J HCOOR *. Te e dfferece s sgfc e.0 eve. e Dfferece 9% Cofdece Ierv I-J d. Error g. ower Boud Upper Boud * * * * * E-0 80* * E * Ο παραπάνω πίνακας περιέχει σε κάθε γραή που αφορά τη έθοδο Tuey τις ποσότητες e Dfferece s.e. g. B UB FR s. e. q ± s. e. ενώ σε κάθε γραή που αφορά τη έθοδο Boferro περιέχει τις ποσότητες e Dfferece s.e. g. B UB { F s. e. ± s. e. Παρατηρούε ότι σύφωνα ε την έθοδο Tuey υπάρχει στατιστικά σηαντική διαφορά ε.σ. % εταξύ των έσων και και εταξύ των έσων και. Για όλες τις υπόλοιπες συγκρίσεις δεν έχουε αρκετά στοιχεία ώστε να απορρίψουε την ισότητα. Εποένως ο έσος διαφέρει από τους που πορεί να είναι ίσοι ενώ ο πορεί να είναι ίσος είτε ε τον είτε ε τους. Άρα τα άτοα ε ανοιχτό ξανθό χρώα αλλιών στάθη έχουν εγαλύτερη αντοχή στον πόνο από ότι άτοα ε ελαχρινό ανοιχτό ή σκούρο χρώα αλλιών στάθες. Για τις υπόλοιπες συγκρίσεις δεν πορούε να αποφανθούε. Με βάση τα παραπάνω προκύπτουν δύο «πιθανές» οογενείς οάδες έσων: η οάδα { και η οάδα { οι οποίες δίνονται και από το : Bouss.V. 00 Σηειώσεις αθήατος «Στατιστικά Προγράατα» Τήα Στατ. & Ασφ. Επιστήης Πανεπιστήιο Πειραιώς 9

11 Hoogeeous ubses CORE ubse for p.0 HCOOR N Tuey HD b g es for groups oogeeous subses re dspyed.. Uses Hroc e pe ze 706. b. Te group szes re uequ. Te roc e of e group szes s used. Type I error eves re o gureed. Το πρώτο p-vue που δίνεται στον πίνακα αφορά την οογένεια της πρώτης οάδας των έσων. Αντιστοιχεί στον έλεγχο της υπόθεσης Η 0 : και επειδή το εκτιάται εταξύ των η υπόθεση αυτή είναι ισοδύναη ε την έσω της εθόδου Tuey θεωρώντας ως πλήθος παρατηρήσεων σε κάθε στάθη ίσο ε τον αρονικό έσο του πλήθους των παρατηρήσεων σε όλες τις κλάσεις δηλ δηλ. p vue F R Το δεύτερο p-vue 0.6 αφορά αντίστοιχα την οογένεια της δεύτερης οάδας των έσων. Αντιστοιχεί στον έλεγχο της υπόθεσης Η 0 : έσω της εθόδου Tuey και πάλι ε βάση τον αρονικό έσο. 6 Για να ελέγξουε αν οι διασπορές των παρατηρήσεων είναι ίδιες σε όλες τις στάθες του παράγοντα χρησιοποιούε το τεστ evee. Επιλέγουε yzecopre esoe-wy NOV Depede s: CORE Fcor: HCOOR Opos: cec Hoogeey of vrce από όπου παίρνουε βλ. παρ. 7.. CORE Tes of Hoogeey of Vrces evee sc df df g εν πορούε να απορρίψουε ότι οι διασπορές των παρατηρήσεων είναι ίσες σε όλες τις στάθες p-vue Για να εφαρόσουε ένα γραικό οντέλο της ορφής CORE b0 b HCOOR ε θα πρέπει η HCOOR να είναι sced. Σε αυτή την περίπτωση η HCOOR είναι απλώς ord πορούε να διατάξουε τις στάθες της. Θα πορούσαε να την θεωρήσουε sced ε τιές αλλά προφανώς οι τιές αυτές είναι εντελώς αυθαίρετες και η σχέση που έχουν εταξύ τους δεν συφωνεί απαραίτητα ε την σχέση που έχουν οι κλάσεις του χρώατος αλλιών ε συνέπεια να οδηγηθούε σε αφίβολα αποτελέσατα. Bouss.V. 00 Σηειώσεις αθήατος «Στατιστικά Προγράατα» Τήα Στατ. & Ασφ. Επιστήης Πανεπιστήιο Πειραιώς 9

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΜΕΣΕΣ ΤΙΜΕΣ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΜΕΣΕΣ ΤΙΜΕΣ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ ΚΕΦΑΛΑΙΟ 18 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΜΕΣΕΣ ΤΙΜΕΣ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Στο κεφάλαιο αυτό θα ας απασχολήσουν έλεγχοι στατιστικών υποθέσεων που αναφέρονται στις έσες τιές και αναλογίες πληθυσών

Διαβάστε περισσότερα

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ 2

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ 2 ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΝΤΑΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΠΑΡΑΔΟΣΕΙΣ ΔΕΚΕΜΒΡΙΟΣ 006 ΕΙΣΑΓΩΓΗ.... ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΥΗΜΕΡΙΑΣ... 3. Τα θεελιώδη θεωρήατα της

Διαβάστε περισσότερα

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = =

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = = Παράδειγα Το γωστό παράδειγα ε τα βάρη 0 ατόω ταξιοηέα σε 5 οάδες. Η έση τιή για το δείγα έχει βρεθεί 77. Τάξη Απόλυτες συχότητες Κετρική τιή τάξης Απόκλιση από το έσο 65-69 67,5 9,5 70-7 6 7,5,5 75-79

Διαβάστε περισσότερα

Ασαφής Λογική & Έλεγχος

Ασαφής Λογική & Έλεγχος Τεχνητή Νοηοσύνη 7 σαφής Λογική & Έλεγχος Φώτης Κόκκορας ΤΕΙ Θεσσαλίας Τήα Μηχανικών Πληροφορικής (Fuzzy Logic Fuzzy Control) Η σαφής Λογική (Fuzzy Logic)......δεν είναι καθόλου...ασαφής ή ανακριβής, όπως

Διαβάστε περισσότερα

Διάδοση των Μιονίων στην Ύλη

Διάδοση των Μιονίων στην Ύλη 4 Διάδοση των Μιονίων στην Ύλη Εισαγωγή Σε αυτό το Κεφάλαιο περιγράφουε τις φυσικές διαδικασίες που συνεισφέρουν στην απώλεια ενέργειας ενός ιονίου καθώς αυτό διαδίδεται σε ένα έσο, όπως το νερό ή ο πάγος.

Διαβάστε περισσότερα

Η Μέθοδος Παραγοντοποίησης Ακεραίων Αριθών Number Field Sieve: Θεωρία και Υλοποίηση. Νικόλαος Καραπάνος

Η Μέθοδος Παραγοντοποίησης Ακεραίων Αριθών Number Field Sieve: Θεωρία και Υλοποίηση. Νικόλαος Καραπάνος Η Μέθοδος Παραγοντοποίησης Ακεραίων Αριθών Number Field Sieve: Θεωρία και Υλοποίηση Νικόλαος Καραπάνος Master Thesis Επιβλέπων: Παύλος Σπυράκης, Καθηγητής Τήα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήιο Πατρών

Διαβάστε περισσότερα

... λέγονται στοιχεία του πίνακα Α και οι δείκτες i και j δηλώνουν τη γραμμή και τη στήλη, αντίστοιχα, που ανήκει το στοιχείο α

... λέγονται στοιχεία του πίνακα Α και οι δείκτες i και j δηλώνουν τη γραμμή και τη στήλη, αντίστοιχα, που ανήκει το στοιχείο α ΚΕΦΑΛΑΙΟ 2 ΠΙΝΑΚΕΣ Στο Κεφάλαιο αυτό θα ασχοληθούε ε το ορισό και τις στοιχειώδεις ιδιότητες τω πιάκω, που είαι ορθογώιες παρατάξεις αριθώ ή άλλω στοιχείω Οι πίακες εφαίζοται στη θεωρία τω γραικώ συστηάτω,

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΟΥ ΚΑΙ ΟΜΙΛΙΑΣ ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤ. ΕΚΠ/ΣΗΣ ΙΟΥΝΙΟΣ 2005

ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΟΥ ΚΑΙ ΟΜΙΛΙΑΣ ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤ. ΕΚΠ/ΣΗΣ ΙΟΥΝΙΟΣ 2005 ΑΪΒΑΛΗ ΕΛΕΝΗ ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΠΙΤΡΟΠΗ ΕΡΕΥΝΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤ. ΕΚΠ/ΣΗΣ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΠΡΟΓΡΑΜΜΑ ΕΞΕΙΔΙΚΕΥΣΗ! ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΟΥ ΚΑΙ ΟΜΙΛΙΑΣ ΙΟΥΝΙΟΣ 2005 ΕΠΙΣΤΗΜΟΝΙΚΟΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ. 5 ο ΕΞΑΜΗΝΟ ΣΤΑΤΙΣΤΙΚΑ ΠΑΚΕΤΑ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ. 5 ο ΕΞΑΜΗΝΟ ΣΤΑΤΙΣΤΙΚΑ ΠΑΚΕΤΑ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ο ΕΞΑΜΗΝΟ ΣΤΑΤΙΣΤΙΚΑ ΠΑΚΕΤΑ Ι Ι ΑΣΚΩΝ ΣΤΕΛΙΟΣ ΖΗΜΕΡΑΣ Σάος 3 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ...3. ΣΤΑΤΙΣΤΙΚΗ ΣΤΑΤΙΣΤΙΚΟΣ ΑΝΑΛΥΤΗΣ...3.

Διαβάστε περισσότερα

= = = = N N. Σηµείωση:

= = = = N N. Σηµείωση: Ανάλογα ε τα φορτία που αναπτύσσονται σε ια διατοή ακολουθείται διαφορετική διαδικασία διαστασιολόγησης. 1 Φορτία ιατοής Καθαρή Κάψη Ροπή M σε ια διεύθυνση Προέχουσα Κάψη+Θλίψη Ροπή M σε ια διεύθυνση ε

Διαβάστε περισσότερα

ΠΟΔΗΛΑΤΟ ΓΥΜΝΑΣΤΙΚΗΣ WELLY M

ΠΟΔΗΛΑΤΟ ΓΥΜΝΑΣΤΙΚΗΣ WELLY M ΠΟΔΗΛΑΤΟ ΓΥΜΝΑΣΤΙΚΗΣ WELLY M,,,. Αυτοκόλλητες ετικέτες (πάνω στο προϊόν) 1) Στην ετικέτα της ταυτότητας του προϊόντος αναφέρονται τα στοιχεία του αντιπροσώπου, τα βασικά τεχνικά χαρακτηριστικά και ο σειριακός

Διαβάστε περισσότερα

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance)

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance) ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (Oe-way aalysis of variace) Να γίνει µια εισαγωγή στη µεθοδολογία της ανάλυσης > δειγµάτων Να εφαρµοσθεί και να κατανοηθεί η ανάλυση διασποράς µε ένα παράγοντα. Να κατανοηθεί η χρήση των

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ ΙΑΚΗΡΥΞΗΣ ΙΑΓΝΙΣΜΟΥ

ΠΕΡΙΛΗΨΗ ΙΑΚΗΡΥΞΗΣ ΙΑΓΝΙΣΜΟΥ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΜΟΣ ΘΕΡΜΑΪΚΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΝ ΓΡΑΦΕΙΟ ΠΡΟΜΗΘΕΙΝ Περαία,: 01/04/14 Αρ. πρωτ.: 8733 ΠΕΡΙΛΗΨΗ ΙΑΚΗΡΥΞΗΣ ΙΑΓΝΙΣΜΟΥ Ο ήαρχος Θεραϊκού, Ιωάννης Αλεξανδρής, προκηρύσσει

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

EIOPA(BoS(13/164 EL. Κατευθυντήριες γραές για την εξέταση αιτιάσεων από ασφαλιστικούς διαεσολαβητές

EIOPA(BoS(13/164 EL. Κατευθυντήριες γραές για την εξέταση αιτιάσεων από ασφαλιστικούς διαεσολαβητές EIOPA(BoS(13/164 EL Κατευθυντήριες γραές για την εξέταση αιτιάσεων από ασφαλιστικούς διαεσολαβητές EIOPA WesthafenTower Westhafenplatz 1 60327 Frankfurt Germany Phone: +49 69 951119(20 Fax: +49 69 951119(19

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Ο ΠΕΤΡΟΣ ΚΑΙ Ο ΛΥΚΟΣ ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΥΜΦΩΝΙΚΗΣ ΟΡΧΗΣΤΡΑΣ ΚΥΠΡΟΥ ΓΙΑ ΠΑΙΔΙΑ ΠΡΟΣΧΟΛΙΚΗΣ ΚΑΙ ΠΡΩΤΗΣ ΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ (3 ½ 7 ½ ετών)

Ο ΠΕΤΡΟΣ ΚΑΙ Ο ΛΥΚΟΣ ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΥΜΦΩΝΙΚΗΣ ΟΡΧΗΣΤΡΑΣ ΚΥΠΡΟΥ ΓΙΑ ΠΑΙΔΙΑ ΠΡΟΣΧΟΛΙΚΗΣ ΚΑΙ ΠΡΩΤΗΣ ΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ (3 ½ 7 ½ ετών) Ο ΠΕΤΡΟΣ ΚΑΙ Ο ΛΥΚΟΣ ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΥΜΦΩΝΙΚΗΣ ΟΡΧΗΣΤΡΑΣ ΚΥΠΡΟΥ ΓΙΑ ΠΑΙΔΙΑ ΠΡΟΣΧΟΛΙΚΗΣ ΚΑΙ ΠΡΩΤΗΣ ΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ (3 ½ 7 ½ ετών) Ελάτε να γνωρίσουε τη συφωνική ορχήστρα έσα από το ουσικό παραύθι

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

VOGEL-Αντλίες ε σπειροειδές περίβληα Σειρά προϊόντων: LSB

VOGEL-Αντλίες ε σπειροειδές περίβληα Σειρά προϊόντων: LSB el VOGEL-Αντλίες ε σπειροειδές περίβληα Σειρά προϊόντων: LSB Οδηγίες εκατάστασης, λειτουργίας και συντήρησης Μετάφραση του πρωτοτύπου των οδηγιών χρήσης el ιαφυλάξτε τις για ελλοντική χρήση! Λάβετε υπόψη

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ ΙΑΚΗΡΥΞΗΣ ΙΑΓΝΙΣΜΟΥ

ΠΕΡΙΛΗΨΗ ΙΑΚΗΡΥΞΗΣ ΙΑΓΝΙΣΜΟΥ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΜΟΣ ΘΕΡΜΑΪΚΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΝ Γραφείο Προηθειών Περαία,: 05/03/14 Αρ. πρωτ.: 6027 ΠΕΡΙΛΗΨΗ ΙΑΚΗΡΥΞΗΣ ΙΑΓΝΙΣΜΟΥ Ο ήαρχος Θεραϊκού, Ιωάννης Αλεξανδρής, προκηρύσσει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

ΠΟΔΗΛΑΤΟ ΓΥΜΝΑΣΤΙΚΗΣ WELLY S

ΠΟΔΗΛΑΤΟ ΓΥΜΝΑΣΤΙΚΗΣ WELLY S ΠΟΔΗΛΑΤΟ ΓΥΜΝΑΣΤΙΚΗΣ WELLY S,,,. Αυτοκόλλητες ετικέτες (πάνω στο προϊόν) 1) Στην ετικέτα της ταυτότητας του προϊόντος αναφέρονται τα στοιχεία του αντιπροσώπου, τα βασικά τεχνικά χαρακτηριστικά και ο σειριακός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεμάτων

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Σύστηµα Ουράς. Πειθαρχία ουράς ή Πειθαρχία εξυπηρέτησης

Σύστηµα Ουράς. Πειθαρχία ουράς ή Πειθαρχία εξυπηρέτησης ΘΕΩΡΙΑ ΟΥΡΑΣ Ουρές ή Γρές Ανονής: Φινόενο που δηιουργείτι ότν η τρέχουσ ζήτηση γι ί εξυπηρέτηση είνι εγύτερη πό την τρέχουσ ικνότητ εξυπηρέτησης του συστήτος Αντικειενικός σκοπός του προβήτος της ουράς:

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ (5-9-2005) ΟΜΑΔΑ Α ( 40% ) ΛΥΣΗ: ( 2 ) μόνο για αυτή την τιμή ισχύει

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ (5-9-2005) ΟΜΑΔΑ Α ( 40% ) ΛΥΣΗ: ( 2 ) μόνο για αυτή την τιμή ισχύει ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ 5-9-5 ΟΜΑΔΑ Α 4% Αν τα ενδεχόμενα Α, Β, Γ ενός δειγματικού χώρου Ω είναι ανεξάρτητα μπορούμε να πούμε το ίδιο για τα α A B, Γ β Α,Β Γ

Διαβάστε περισσότερα

Στατιστικοί έλεγχοι για διακριτά δεδομένα

Στατιστικοί έλεγχοι για διακριτά δεδομένα Στατιστικοί έλεγχοι για διακριτά δεδομένα Διαστρωμάτωση Mantel-Haenszel test Γεωργία Σαλαντή Λέκτορας επιδημιολογίας Λεπτοσπείρωση Πιο πολλά κρούσματα στις αγροτικές περιοχές; Πόσο επί τις εκατό του πληθυσμού

Διαβάστε περισσότερα

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Γεσθημανή Μηντζιώρη MD, MSc, PhD Μονάδα Ενδοκρινολογίας της Αναπαραγωγής, Α Μαιευτική και Γυναικολογική

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

Β.2.6. Γεωµετρικός µέσος.

Β.2.6. Γεωµετρικός µέσος. 6 Β..6. Γεωετρικός έος. α) Τα δεδοέα δίοται ααλυτικά Οριός Β.. Έτω ότι τα δεδοέα είαι δοέα ααλυτικά ( τιές που ατιτοιχού τα άτοα του πληθυού): i, i,,,..., Οοάζουε Γεωετρικό έο τω δεδοέω i, τη -οτή ρίζα

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA)

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA) ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 8. Ανάλυση διασποράς (ANOVA) Γενικά Επέκταση της σύγκρισης µέσων τιµών µεταβλητής ανάµεσα σε 2 δείγµατα (οµάδες ήστάθµες): Σύγκριση πολλών δειγµάτων (K>2) µαζί Σχέση ανάµεσα σε µια ποσοτική

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Αν το αποτέλεσμα ενός τυχαίου πειράματος είναι - ένας αριθμός R, τότε μπορεί να εκφραστεί με μία τ.μ. Χ R - αριθμοί R τότε μπορεί να εκφραστεί με ένα τ.δ. Χ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

Μάθημα Αστικής Γεωγραφίας

Μάθημα Αστικής Γεωγραφίας Μάθημα Αστικής Γεωγραφίας Διδακτικό Έτος 2015-2016 Παραδόσεις Διδακτικής Ενότητας: Πληθυσμιακή πρόβλεψη Δούκισσας Λεωνίδας, Στατιστικός, Υποψ. Διδάκτορας, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο Σελίδα

Διαβάστε περισσότερα

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2.

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. ΕΙΣΑΓΩΓΗ 17.3. ΤΟ χ 2 ΓΙΑ ΜΙΑ ΠΟΙΟΤΙΚΗ ΜΕΤΑΒΛΗΤΗ 17.3.1. Ένα ερευνητικό παράδειγμα

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 ΑΝΔΡΕΑΣ Λ. ΠΕΤΡΑΚΗΣ ΑΡΙΣΤΟΥΧΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΔΑΚΤΩΡ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y = x ΔΕΥΤΕΡΗ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

Braunwald s Heart Disease 9 th ed. 2011

Braunwald s Heart Disease 9 th ed. 2011 ΚΑΡΙΟΓΕΝΗΣ ΚΑΤΑΠΛΗΞΙΑ Κατσιάνης Αντώνιος Καρδιολογική Κλινική Γ.Π.Ν.Τρίπολης «Η Ευαγγελίστρια» Ορισός καρδιογενούς καταπληξίας ( shock ) Ιστική υποάρδευση λόγω ανεπάρκειας της καρδιάς ως αντλίας παρά την

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΤΟ ΝΕΟ ΕΥΡΩΠΑΪΚΟ ΠΡΟΤΥΠΟ ΕΝ 12830 Καταγραφικά θερµόµετρα για την µεταφορά, αποθήκευση και διανοµή τροφίµων και παγωτού σε ψύξη, κατάψυξη, βαθιά - κατάψυξη / ταχεία κατάψυξη - οκιµές, απόδοση, καταλληλότητα

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ)

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ) ΑΣΚΗΣΕΙΣ. Ο διευθυντής προσωπικού μιας μεγάλης εταιρείας πιστεύει ότι ίσως υφίσταται κάποια σχέση μεταξύ των ημερών απουσίας και της ηλικίας των εργαζομένων. Με βάση την υπόθεση αυτή ενδιαφέρεται να κατασκευάσει

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008 Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 8 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 9.9.8. [] Μια βιομηχανία τροφίμων προμηθεύεται νωπά κοτόπουλα από τρεις διαφορετικούς παραγωγούς Α, Β, Γ. Το % των κοτόπουλων

Διαβάστε περισσότερα

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας ΙΕΚ ΞΑΝΘΗΣ Μάθημα : Στατιστική Ι Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας Επαμεινώνδας Διαμαντόπουλος Ιστοσελίδα : http://users.sch.gr/epdiaman/ Email : epdiamantopoulos@yahoo.gr 1 Στόχοι της υποενότητας

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Εξεταστική περίοδος Φεβρουαρίου Η εξέταση αποτελείται από

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Μη Παραµετρικοί Έλεγχοι

Μη Παραµετρικοί Έλεγχοι Μη Παραµετρικοί Έλεγχοι Επιστηµονική Επιµέλεια: ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας Viola adorata Καταρχήν Μη Παραµετρικοί Έλεγχοι εν απαιτούν κανονικότητα

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: Θέμα 1ο Α) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος). 1) Ο έλεγχος μιας συνθήκης έχει μόνο δυο τιμές,

Διαβάστε περισσότερα

την τιμή της μέσης τιμής, μ, ή της διασποράς, σ, ενός πληθυσμού και σε στατιστικούς ελέγχους υποθέσεων για τη σύγκριση των μέσων τιμών, μ

την τιμή της μέσης τιμής, μ, ή της διασποράς, σ, ενός πληθυσμού και σε στατιστικούς ελέγχους υποθέσεων για τη σύγκριση των μέσων τιμών, μ Ανάλυση Διασποράς Ανάλυση Διασποράς (Analysis of Variance, ANOVA) είναι μέθοδος στατιστικού ελέγχου υποθέσεων που αναφέρονται σε περισσότερους από δύο πληθυσμούς. Στην προηγούμενη ενότητα αναφερθήκαμε

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ, E.M.Π ΕΡΓΑΣΤΗΡΙΟ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΙΑΧΕΙΡΙΣΗΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ: Υ ΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΑΜΗΝΟ: 8 ο

ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ, E.M.Π ΕΡΓΑΣΤΗΡΙΟ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΙΑΧΕΙΡΙΣΗΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ: Υ ΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΑΜΗΝΟ: 8 ο ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ, E.M.Π ΕΡΓΑΣΤΗΡΙΟ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΙΑΧΕΙΡΙΣΗΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ: Υ ΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΑΜΗΝΟ: 8 ο Άσκηση Οικισµός ΑΒΓ Α υδροδοτείται από δεξαµενή µέσω

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις. Μια μηχανή εμφιάλωσης κρασιού γεμίζει φιάλες του μισού κιλού με ποσότητα κρασιού η οποία είναι κανονική τυχαία μεταβλητή

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

1.1. Η Χρησιμότητα της Στατιστικής

1.1. Η Χρησιμότητα της Στατιστικής ε ν ό τ η τ α 1 1.1. Η Χρησιμότητα της Στατιστικής Οι εφαρμογές των μεθόδων της στατιστικής είναι ευρείες. Πριν την αναφορά μας για τη χρησιμότητα της στατιστικής, είναι σκόπιμο να παραθέσουμε τους παρακάτω

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμηματικό e-mal : dap_ode@yahoo.gr www.dap-pape.gr

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεµάτων

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

(factor) (level) covariates 1.3

(factor) (level) covariates 1.3 ΓΕΝΙΚΕΥΜΕΝΑ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ ΜΕΡΟΣ Α ΕΙΣΑΓΩΓΗ ΛΟΓΙΣΤΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ Γ. ΤΖΑΒΕΛΑΣ . Εαγωγή.. Σκοός Ο κοός του Μαήατος αυτού είνα να εάγε τον αναγνώτη ε ία τάξη ταττκών οντέλων ου είνα φυκή γενίκευη των

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα