ΧΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΧΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ"

Transcript

1 ΧΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ Α. ΑΣΦΑΛΙΣΕΙΣ ΕΠΙ ΠΟΛΛΩΝ ΚΕΦΑΛΩΝ Ορισένες φορές ένα ασφαλιστήριο καλύπτει περισσότερες από ία ζωές. Ένα προφανές παράδειγα είναι η ασφάλιση θανάτου για δύο συζύγους, καθένας από τους οποίους είναι διούχος του ασφαλισένου κεφαλαίου αν πεθάνει ο άλλος. Η ασφάλιση αυτή πληρώνει στον πρώτο από τους δύο θανάτους. Ένα άλλο παράδειγα είναι η ασφάλιση θανάτου δύο γονέων ε διούχους τα παιδιά τους όταν πεθάνει ο τελευταίος από τους δύο γονείς. Ένα γενικότερο παράδειγα είναι η ασφάλιση n ατόων ε καταβολή του κεφαλαίου θανάτου όταν επέλθει ο υπ' αριθ. m θάνατος ( m n. Ακόα πιο πολύπλοκα σχήατα προκύπτουν όταν προϋπόθεση για την καταβολή του ασφαλισένου ποσού είναι κάποιοι από τους θανάτους να επέλθουν ε ια συγκεγκριένη σειρά. Β. ΑΠΟ ΚΟΙΝΟΥ ΠΙΘΑΝΟΤΗΤΕΣ Για τον υπολογισό από κοινού πιθανοτήτων επιβίωσης, θανάτου, κ.λ.π., θεωρούε ότι οι τ.. T T είναι ανεξάρτητες,. [Η υπόθεση αυτή είναι σωστή ε πολύ εγάλο βαθό προσέγγισης, όχι όως απόλυτα. Κατά κανόνα ισχύει για ατοικές ασφαλίσεις, ισχύει όως κάπως λιγότερο στις οαδικές ασφαλίσεις, όπου, π.χ., οι ασφαλισένοι πορεί να υπόκεινται στους ίδιους εργασιακούς κινδύνους ή όπου τα ανώτατα στελέχη ιας επιχείρησης πορεί να ταξιδεύουν συχνά αζί ε το ίδιο ιδιωτικό αεροπλάνο, κ.λ.π.. Ακόα στις ατοικές, δύο σύζυγοι, π.χ., έχουν συχνά το ίδιο "lifele" (π.χ., τις ίδιες διατροφικές συνήθειες. Γενικά όως η ανεξαρτησία των κινδύνων είναι ια αρκετά καλή "υπόθεση εργασίας".] Υπενθυίζουε ότι η τ.. T έχει σ.π.π., σ.κ. συνάρτηση επιβίωσης. Αν έχουε δύο ζωές ( ( ε αντίστοιχες τ.. T T, γράφουε ( για το σύνολο των δύο ζωών για την πιθανότητα να επιζήσουν οι δύο χρόνια. Συνηθίζεται να βλέπουε το ( ως ία οντότητα, στην οποία δίνουε το όνοα καθεστώς (a. Οιλούε άλιστα για την επιβίωση του καθεστώτος ( εννοώντας την επιβίωση του ( του (. Κάτω από την υπόθεση της ανεξαρτησίας, γενικότερα, για οποιοδήποτε καθεστώς (w,.... w... w Προσοχή χρειάζεται στην ερηνεία του συβόλου (*. Η άρνηση του "να επιζήσουν οι δύο" είναι να πεθάνει τουλάχιστον ένας (να πεθάνει ένας εξ αυτών ή οι. (Το αποτέλεσα δύο. Από την (* παίρνουε ( ( αυτό είναι προφανές από όνο του εφόσον τα γεγονότα "θάνατος του ( έσα σε χρόνια" "θάνατος του ( έσα σε χρόνια" δεν αποκλείουν το ένα το άλλο εποένως η πιθανότητα δεν πορεί να είναι ίση ε, αλλά ε ειωένο κατά την πιθανότητα της "τοής" (πραγατοποίησης των δύο γεγονότων. Για τον υπολογισό του είναι φυσικά απλούστερη η δεν ισχύει πολλαπλασιαστική σχέση. Αξίζει τέλος να τονισθεί ότι για το καθεστώς ( : τέτοια σχέση ισχύει όνο για το.

2 Βλέπουε λοιπόν ότι η από κοινού συνάρτηση επιβίωσης για δύο ζωές ( ( είναι ότι η από κοινού σ.κ. είναι F. Η από κοινού σ.π.π. είναι ( ( ( F ( ( ( ( ( f όπου φαίνεται ότι η ένταση θνησιότητας για το καθεστώς ( είναι :, από. Η αθροιστική αυτή σχέση, που συνδέεται φυσικά άεσα ε την πολλαπλασιαστική σχέση εταξύ των, είναι απόλυτα εύλογη : ένα καθεστώς (w παύει να υπάρχει αν πεθάνει ένα έλος του, άρα η ένταση της έκθεσης του καθεστώτος σε "θάνατο" είναι το άθροισα των εντάσεων της έκθεσης των ελών του καθεστώτος στον κίνδυνο πραγατικού θανάτου. Σε κάθε περίπτωση, είναι χρήσιο να θυόαστε ότι οι σχέσεις : είναι ισοδύναες. Το ( γενικότερα το (w είναι καθεστώτα που λήγουν (εξαλείφονται όταν πεθάνει ένα έλος τους (ή ισοδύναα όταν επέλθει ο πρώτος θάνατος, βλ. Παράγραφο Α. Για ένα καθεστώς που θεωρείται λήξαν όταν επέλθει ο τελευταίος θάνατος γράφουε ( γενικότερα ( w.... Για να εξαλειφθεί το ( έσα στα επόενα χρόνια, πρέπει να πεθάνει ο ( ο (, άρα. Βλέπουε ότι για το καθεστώς ( η εικόνα αντιστρέφεται πολλαπλασιαστική σχέση ισχύει για το. Όσο για το είναι η πιθανότητα να επιβιώσει τουλάχιστον ένας από τους ( (. Συγκρίνοντας τις σχέσεις (να ερηνευθεί η σχέση αυτή λεκτικά., συπεραίνουε ότι Από τα παραπάνω είναι προφανές ότι η σ.κ. για το χρόνο ζωής του καθεστώτος ( είναι. Για τη σ.π.π. της F ( η συνάρτηση επιβίωσης είναι ( διάρκειας του (, έχουε f (. [Ο πρώτος όρος αντιστοιχεί στη σειρά θανάτων "πρώτα ο (, ετά ο (" (εφόσον τη στιγή θανάτου του (, ο ( είναι ήδη νεκρός ε πιθανότητα ο δεύτερος όρος στη σειρά "πρώτα ο (, ετά ο (".] Όσο για την ένταση θνησιότητας :. Έτσι, : όπου βλέπουε ότι η :, αυτή προκύπτει αν διαιρέσουε την σ.π.π. f ( ε ( είναι σταθισένος έσος των εντάσεων, (*, από : (ε "σταθά" τα,. Αν η (* γραφεί ως, βλέπουε ακόα ότι οι σ.π.π. των τ.. T : : έχουν το ίδιο άθροισα ε τις σ.π.π. των τ.. αφού ισχύει για τις σ.κ. Η σχέση,,. T T T (σχέση που έπρεπε να αναένεται είναι επίσης αληθής αφού οι σ.π. είναι διαφορές των αντίστοιχων σ.κ.. Οι πιθανότητες. προκύπτουν αέσως ως

3 Εφόσον έχουε Γ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΩΝ ΑΠΟ ΚΟΙΝΟΥ ΠΙΘΑΝΟΤΗΤΩΝ ( είναι αντίστοιχα η σ.κ. η σ.π.π. του καθεστώτος (, d, από όπου πορεί να υπολογισθεί η πιθανότητα όταν είναι γνωστές οι συναρτήσεις επιβίωσης οι εντάσεις θνησιότητας για τις ζωές ( (. (Σηειώνεται ότι, για τον υπολογισό, δεν απαιτείται το ισόνοο των T T! Άλλωστε ισόνοο δεν υπάρχει εκτός αν! ( Η πιθανότητα πορεί να γραφεί ως το άθροισα d d. Στο πρώτο ολοκλήρωα, ο "θάνατος" του καθεστώτος ( (που "επιζεί" έχρι τη στιγή,, ε πιθανότητα οφείλεται στην επενέργεια της έντασης θνησιότητας,, του ( άρα είναι η πιθανότητα να πεθάνει ο ( πρώτος έσα στα επόενα χρόνια. Κατά τον ίδιο τρόπο, το δεύτερο ολοκλήρωα αντιστοιχεί στην πιθανότητα να πεθάνει ο ( πρώτος έσα στα επόενα χρόνια. Έτσι έχουε, σχέση απόλυτα φυσική αφού το καθεστώς ( "λύεται" στον πρώτο θάνατο αυτός ο θάνατος πορεί να είναι είτε του ( είτε του (. Σηειώνεται ότι το συβάν "ο ( πεθαίνει πρώτος έσα σε χρόνια" δεν παρέχει πληροφορία για την τελική τύχη του ( πέραν του ότι ο ( ζούσε κατά το θάνατο του ( (που συνέβη έσα σε χρόνια : ο ( πορεί να πέθανε εκείνος (δεύτερος πριν από την εκπνοή των ετών, ή να πέθανε ετά την εκπνοή των ετών. Προφανώς ειδικότερα. Η σχέση ( d πορεί κατά τον ίδιο τρόπο να γραφεί, όπου είναι η πιθανότητα ο ( να πεθάνει δεύτερος έσα σε χρόνια. Η σχέση αυτή είναι απόλυτα εύλογη αφού το ( "λύεται" στο δεύτερο θάνατο αυτός πορεί να είναι ή του ( ή του (. Και στην παρούσα περίπτωση ισχύουν οι σχέσεις. Είναι βέβαια απόλυτα φυσικό οι πιθανότητες πρώτου θανάτου να αθροίζονται σε πιθανότητες δεύτερου θανάτου να αθροίζονται σε οι. Όως εξίσου ενδιαφέρουσα είναι η άθροιση των πιθανοτήτων,,, όχι ε βάση το ή το (τη σειρά του θανάτου αλλά το ( ή το ( (τη ζωή. Τότε παίρνουε ειδικότερα.

4 Στην περίπτωση που η θνησιότητα των ( ( προέρχεται από πίνακα, τα υπολογίζονται από ( (. Σύβολα όπως τα (, (,..., ( n τη σειρά των θανάτων. Έτσι, π.χ.,. ΠΙΟ ΣΥΝΘΕΤΕΣ ΑΠΟ ΚΟΙΝΟΥ ΠΙΘΑΝΟΤΗΤΕΣ,, κ.λ.π. πορεί να επεκταθούν σε οποιοδήποτε πλήθος ζωών πορεί επιπλέον να δηλώνουν περισσότερους περιορισούς ως προς είναι η πιθανότητα να πεθάνουν οι τρεις ζωές έσα σε χρόνια ε τη σειρά που δηλώνεται (ο ( υποχρεωτικά δεύτερος. είναι η πιθανότητα ο ( να πεθάνει δεύτερος έσα σε χρόνια (περιπτώσεις (α πεθαίνει ο (, ετά ο ( ο ( πεθαίνει τελευταίος (έσα στα χρόνια ή ετά την πάροδο των ετών, (β πεθαίνει. ο (, ετά ο ( ο ( πεθαίνει τελευταίος (ή έσα στην περίοδο ή ετά είναι η πιθανότητα να πεθάνει ο ( τελευταίος έσα σε χρόνια (προφανώς. : : είναι η πιθανότητα το καθεστώς (w να εκλείψει πριν από το καθεστώς w :. w : ( (να πεθάνει ή ο (w ή ο ( ενώ οι ( ( ζουν είναι η πιθανότητα το ( w να εκλείψει πριν από το ( έσα στο έτος από σήερα (να πεθάνει ο (w ο ( (ε οποιαδήποτε σειρά έσα στο έτος ενώ ζει ακόα ένας από τους (, ( ή ζουν οι δύο. κ.ο.κ.. εν υπάρχει ένας οναδικός τρόπος υπολογισού πιο σύνθετων από κοινού πιθανοτήτων όπως είναι οι παραπάνω. Συνήθως απαιτούνται επανειληένες ολοκληρώσεις υπάρχουν διάφορες εκφράσεις της ίδιας πιθανότητας, που καθειά "εστιάζεται" (βασίζεται στη στιγή θανάτου ιας από τις επλεκόενες ζωές. Έτσι, π.χ., d (ορισός εστιασένος στη στιγή του θανάτου του (, οπότε πρέπει να είναι ή πεθαένος ο ( ζωντανός ο ( ή πεθαένος ο ( ζωντανός ο (. Όως, ε "εστιακό σηείο" τη στιγή του πρώτου θανάτου, η ίδια πιθανότητα πορεί να γραφεί d (πεθαίνει πρώτος ο ( στο διάστηα που αποένει πεθαίνει ο ( πριν από τον ( ή πεθαίνει πρώτος ο ( στο διάστηα που αποένει πεθαίνει ο ( πριν από τον (. Στην τελευταία αυτή σχέση, το : d : d πορεί να γραφεί ως ολοκλήρωα, οπότε dd dd dd dd

5 dd d d. dd Στο τελευταίο από τα ισοδύναα αυτά αποτελέσατα πορούε να φθάσουε απευθείας εφόσον το σύβολο σαφώς σχετίζεται ε την επιβίωση των ( ( έχρι τη στιγή του θανάτου του ( ε το θάνατο του ( πριν από τον ( στο υπόλοιπο διάστηα ( το ίδιο ισχύει βέβαια για το. Τις πιο σύνθετες από κοινού πιθανότητες πολλές φορές αναλύουε σε "πιθανότητες πρώτου ( ( θανάτου". Π.χ., αν γράψουε d d για, βλέπουε ότι. Η ίδια πιθανότητα πορεί να γραφεί ( ( d. (Οι δύο τιές είναι ίσες εφόσον ( ( Κατά τον ίδιο τρόπο,. ( d ( d. Ε. ΥΠΟΛΟΓΙΣΜΟΣ ΕΝΙΑΙΩΝ ΑΣΦΑΛΙΣΤΡΩΝ Ο υπολογισός ενιαίων ασφαλίστρων για από κοινού ασφαλίσεις δεν διαφέρει σε τίποτε από τον υπολογισό των από κοινού πιθανοτήτων πέρα από την παρουσία του παράγοντα e δ στα ολοκληρώατα για ασφαλίσεις πληρωτέες τη στιγή της επέλευσης του ασφαλισένου γεγονότος του παράγοντα υ στα αθροίσατα για ασφαλίσεις πληρωτέες στο τέλος του ασφαλιστικού έτους έσα στο οποίο λαβάνει χώρα το ασφαλισένο γεγονός. Έχουε, π.χ., δ δ δ δ A e d A e d e d e d A A A γράψουε αέσως από την αντίστοιχη τιή του. Το αποτέλεσα αυτό θα πορούσαε να που είδαε παραπάνω. Αν στην τελευταία ασφάλιση το κεφάλαιο είναι πληρωτέο όταν πεθάνει ο ( δεύτερος όνον αν έχει προηγηθεί ο θάνατος του (, τότε A A A (δηλαδή είναι A A A. Για ένα άλλο παράδειγα, θεωρούε ασφάλιση πληρωτέα στον τελευταίο θάνατο ε ενιαίο ασφάλιστρο A. Εφόσον A A A A, πορούε να βασισθούε στη δεύτερη έκφραση του που είδαε παραπάνω (γιατί όχι στην πρώτη; στις αντίστοιχες

6 συετρικές εκφράσεις για τα για να δείξουε ότι A ( A A A A ( A A A A ( A A A A ( A A A ( A A A A. Το παράδειγα αυτό δείχνει ένα σηαντικό τρόπο γραφής ενιαίων ασφαλίστρων αυθαίρετων από κοινού ασφαλίσεων αποκλειστικά συναρτήσει ενιαίων ασφαλίστρων για ασφαλίσεις πληρωτέες σε καθεστώτα του τύπου (w.

ΣΤ. ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM

ΣΤ. ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM ΣΤ ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM Όπως σηειώσαε παραπάνω, οι πιθανότητες που εξαρτώνται από τη σειρά των θανάτων πορούν να εφρασθούν συναρτήσει "πιθανοτήτων πρώτου θανάτου" Κατά συνέπεια,

Διαβάστε περισσότερα

Η. ΑΣΚΗΣΕΙΣ ( T) ( 1) ( 2) 3 x =

Η. ΑΣΚΗΣΕΙΣ ( T) ( 1) ( 2) 3 x = Αν είναι "εκ προοιίου φανερό" ότι η παραπάνω διαδικασία είναι συνεπής προς τον υπολογισό της Παραγράφου ΣΤ το προηγούενο παράδειγα επελέγη ε στόχο την επίδειξη αυτής της συνέπειας Η ΑΣΚΗΣΕΙΣ Σε ένα πίνακα

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηµα ασκήσεων 11/12/2006

Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηµα ασκήσεων 11/12/2006 Τήα Επιστήης και Τεχολογίας Υλικώ Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηα ασκήσεω //006 Μελέτη οοδιάστατου στοιχειακού στερεού ε δύο τροχιακά αά άτοο ε χρήση υβριδικώ ατοικώ τροχιακώ Θεωρούε δύο τροχιακά

Διαβάστε περισσότερα

ικαιώατα αερικανικού τύπου

ικαιώατα αερικανικού τύπου Κεφάλαιο 5 ικαιώατα αερικανικού τύπου 5.1 Εισαγωγή Σε αυτό το κεφάλαιο θα δούε πώς πορούε να τιολογήσουε δικαιώατα αερικανικού τύπου ε βάση το διωνυικό υπόδειγα πολλών περιόδων. Θα δούε επίσης την έννοια

Διαβάστε περισσότερα

1) Μη συνεργατική ισορροπία

1) Μη συνεργατική ισορροπία ΠΑΡΑΡΤΗΜΑ: ΔΙΕΘΕΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΣΥΜΩΝΙΕΣ ΩΣ ΕΝΑ ΠΑΙΓΝΙΟ «ΔΙΛΛΗΜΑΟ ΤΟΥ ΦΥΛΑΚΙΣΜΕΝΟΥ» Υποθέτουε ότι υπάρχουν Ν χώρες, όπου N={,, }, η κάθε ία από τις οποίες παράγει αγαθά και εκπέπει e τόνους διοξειδίου

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 2 (Παράδοση:.) Λύση Ι. Το πεδίο ορισµού Α, θα προκύψει από την απαίτηση ο παρονοµαστής να είναι διάφορος του µηδενός.

ΕΡΓΑΣΙΑ 2 (Παράδοση:.) Λύση Ι. Το πεδίο ορισµού Α, θα προκύψει από την απαίτηση ο παρονοµαστής να είναι διάφορος του µηδενός. ΕΡΓΑΣΙΑ (Παράδοση:.) Σηείωση: Οι ασκήσεις είναι βαθολογικά ισοδύναες Άσκηση Να προσδιορίσετε τα όρια: sin( ) I. lim, II. lim sin, III. lim ( ln ) sin z Όπου χρειαστεί να θεωρήσετε γνωστό ότι lim z z Ι.

Διαβάστε περισσότερα

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = =

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = = Παράδειγα Το γωστό παράδειγα ε τα βάρη 0 ατόω ταξιοηέα σε 5 οάδες. Η έση τιή για το δείγα έχει βρεθεί 77. Τάξη Απόλυτες συχότητες Κετρική τιή τάξης Απόκλιση από το έσο 65-69 67,5 9,5 70-7 6 7,5,5 75-79

Διαβάστε περισσότερα

3. Χαρακτηριστικές Παράμετροι Κατανομών

3. Χαρακτηριστικές Παράμετροι Κατανομών . αρακτηριστικές Παράετροι Κατανοών - Αναενόενη ή έση τιή ιας διακριτής τυχαίας εταβητής. Στο προηγούενο κεφάαιο είδαε ότι σε κάθε τ.. αντιστοιχεί ία κατανοή. Αν και η συνάρτηση κατανοής F ή ισοδύναα η

Διαβάστε περισσότερα

Το διωνυικό υπόδειγα πολλών περιόδων

Το διωνυικό υπόδειγα πολλών περιόδων Κεφάλαιο Το διωνυικό υπόδειγα πολλών περιόδων.1 Εισαγωγή Στο κεφάλαιο αυτό θα παρουσιάσουε ένα διακριτό αλλά περισσότερο ρεαλιστικό υπόδειγα αγοράς, το διωνυικό υπόδειγα πολλών περιόδων. Θα διαερίσουε

Διαβάστε περισσότερα

ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΚΕΦ. 2 ΑΛΥΣΙ ΕΣ MARKOV

ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΚΕΦ. 2 ΑΛΥΣΙ ΕΣ MARKOV ΕΙ ΙΚΑ ΘΕΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΚΕΦ ΑΛΥΣΙ ΕΣ MARKOV Πίνακας Περιεχοένων Γενικά3 Εργοδικότητα 3 Πιθανότητες πρώτης ετάβασης Αναενόενος χρόνος8 4 Κλάσεις Ισοδυναίας Κατάταξη Καταστάσεων6 5 Γενική δοή

Διαβάστε περισσότερα

Κεφάλαιο 3. Ιδιότητες μονάδων - συστήματος που βασίζονται σε διάφορους τύπους γήρανσης

Κεφάλαιο 3. Ιδιότητες μονάδων - συστήματος που βασίζονται σε διάφορους τύπους γήρανσης Κεφάλαιο Ιδιότητες ονάδων - συστήατος που βασίζονται σε διάφορους τύπους γήρανσης Έχουε ήδη αναφερθεί στην έννοια της «γήρανσης» ιας ονάδας ή ενός συστήατος κατά την ελέτη IF / DF χρόνων ζωής Συγκεκριένα

Διαβάστε περισσότερα

Υποδείγατα αγορών ιας περιόδου

Υποδείγατα αγορών ιας περιόδου Κεφάλαιο 2 Υποδείγατα αγορών ιας περιόδου 2.1 Εισαγωγή Θα αρχίσουε τώρα να κάνουε υποθέσεις για τη δυναική των πρωτογενών προϊόντων και θα ερευνήσουε αν ε αυτές τις επιπλέον υποθέσεις πορούε να εξαγάγουε

Διαβάστε περισσότερα

V. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α. ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ

V. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α. ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ V ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ Όπως γνωρίζοε, η παρούσα αξία ενός ποσού C πο θα αταβληθεί τη ελλοντιή χρονιή C στιγή είναι ίση ε ( ) i, όπο i το "επιτόιο αποτίησης"

Διαβάστε περισσότερα

Εισαγωγή. 1. Παράµετρος, εκτιµητής, εκτίµηση

Εισαγωγή. 1. Παράµετρος, εκτιµητής, εκτίµηση Εκτίηση Σηείου Εκτίηση Σηείου Εισαγωγή Σε πολλές περιπτώσεις στη στατιστική έχουε συναντήσει προβλήατα για τα οποία απαιτείται να εκτιηθεί ια παράετρος. Η έθοδος που ακολουθεί στις περιπτώσεις αυτές κανείς

Διαβάστε περισσότερα

οποίο ανήκει και π ο γνωστός αριθµός.

οποίο ανήκει και π ο γνωστός αριθµός. 1 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙ Μήκος τόξου : Το ήκος ενός τόξου ο δίνεται από τον τύπο = πρ όπου ρ η ακτίνα του κύκλου στον οποίο ανήκει και π ο γνωστός αριθός.. Το ακτίνιο (rad): Ονοάζουε τόξο ενός ακτινίου (rad)

Διαβάστε περισσότερα

Το οντέλο Black & Scholes ως όριο διωνυικών υποδειγάτων

Το οντέλο Black & Scholes ως όριο διωνυικών υποδειγάτων Κεφάλαιο 6 Το οντέλο Blac & Scoles ως όριο διωνυικών υποδειγάτων 61 Εισαγωγή Σ αυτό το κεφάλαιο θα θεωρήσουε διωνυικά υποδείγατα για τη δυναική του πρωτογενούς προϊόντος στο διάστηα [0,T], όπου το πλήθος

Διαβάστε περισσότερα

Μέτρα martingale. Κεφάλαιο Εισαγωγή. 4.2 εσευένη έση τιή

Μέτρα martingale. Κεφάλαιο Εισαγωγή. 4.2 εσευένη έση τιή Κεφάλαιο 4 Μέτρα martingale 4.1 Εισαγωγή Είδαε στο Κεφάλαιο 2 ότι σε αγορές ιας περιόδου, αν ένα παράγωγο πορεί να αναπαραχθεί, τότε πορούε να το τιολογήσουε σύφωνα ε την αρχή της η επιτηδειότητας και

Διαβάστε περισσότερα

4 η δεκάδα θεµάτων επανάληψης

4 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεάτων επανάληψης 1. ίνεται ισόπλευρο τρίγωνο πλευράς α. Στις πλευρές,, παίρνουε σηεία, Ε, Ζ αντίστοιχα τέτοια ώστε Ε Ζ 1 α Να υπολογίσετε συναρτήσει του α το εβαδόν Του τριγώνου Ζ Του τριγώνου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. (iii) ln(0.5) = , (iv) e =

ΑΣΚΗΣΕΙΣ. (iii) ln(0.5) = , (iv) e = ΑΣΚΗΣΕΙΣ Να συµπληρωθεί ο παρακάτω πίνακας 47 48 49 50 5 l 348480 299692 d 43306 q 0.0 0.2 0.5 2 3 4 5 Η ένταση θνησιµότητας µ +t, 0 t, αλλάζει σε µ +t - c, όπου το c είναι θετικός σταθερός αριθµός. Να

Διαβάστε περισσότερα

dn T dv T R n nr T S 2

dn T dv T R n nr T S 2 Τήα Χηείας Μάθηα: Φυσικοχηεία Ι Εξετάσεις: Περίοδος εκεβρίου 00- (0) Θέα (0 ονάδες) Α) ( ονάδες) Η θεελιώδης εξίσωση θεροδυναικού συστήατος δίνεται από την σχέση: l l όπου και σταθερές και και τα γνωστά

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΜΕΣΕΣ ΤΙΜΕΣ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΜΕΣΕΣ ΤΙΜΕΣ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ ΚΕΦΑΛΑΙΟ 18 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΜΕΣΕΣ ΤΙΜΕΣ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Στο κεφάλαιο αυτό θα ας απασχολήσουν έλεγχοι στατιστικών υποθέσεων που αναφέρονται στις έσες τιές και αναλογίες πληθυσών

Διαβάστε περισσότερα

λ n-1 λ n Σχήµα 1 - Γράφος µεταβάσεων διαδικασίας γεννήσεων- θανάτων

λ n-1 λ n Σχήµα 1 - Γράφος µεταβάσεων διαδικασίας γεννήσεων- θανάτων Κεφάαιο 4. Απά οντέα συστηάτων αναονής Στο κεφάαιο αυτό παρουσιάζουε απά οντέα αναονής (συστήατα ε ένα σταθό εξυπηρέτησης) ενώ τα οντέα δικτύων αναονής θα εξεταστούν σε επόενο κεφάαιο. 4. Μοντέα αναονής

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο) Απαντήσεις στην 2 η Σειρά ασκήσεων

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο) Απαντήσεις στην 2 η Σειρά ασκήσεων ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 8-9 Ηιαγωγοί και Ηιαγώγιες οές (7 ο Εξάηνο) Απαντήσεις στην η Σειρά ασκήσεων 1. α) Αν υποθέσουε ότι δύο ηιαγώγια υλικά, όπως τα S και G, έχουν περίπου ίδιες

Διαβάστε περισσότερα

Ασαφής Λογική και Αναγνώριση Προτύπων

Ασαφής Λογική και Αναγνώριση Προτύπων Ασαφής Λογική και Αναγνώριση Προτύπων Ορισός Έστω Χ ένα τυπικό σύνολο αντικειένων, που το καλούε σύπαν, του οποίου τα στοιχεία τα συβολίζουε ε. Η σχέση του περιέχεσθε για ένα τοπικό υποσύνολο του Α του

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΜΒΑΝΤΑ ΖΩΗΣ & ΘΑΝΑΤΟΥ ΙΟΥΛΙΟΣ 0 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΟΥΛΙΟΥ 0 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 4 ΙΟΥΛΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. μ.)

Διαβάστε περισσότερα

Ενότητα 7: Ανάλυση ιασποράς µε έναν παράγοντα (One way Analysis of Variance)

Ενότητα 7: Ανάλυση ιασποράς µε έναν παράγοντα (One way Analysis of Variance) Ενότητα 7: Ανάλυση ιασποράς ε έναν παράγοντα Oe wy yss of Vrce Σε αυτή την ενότητα θα εξετάσουε ένα ειδικό πρόβληα γραικής παλινδρόησης το ο- ποίο εφανίζεται αρκετά συχνά στις εφαρογές. Συγκεκριένα θέλουε

Διαβάστε περισσότερα

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ = Ο. Μαγνητικό πεδίο ευθύγραµµου ρευµατοφόρου αγωγού. Μαγνητικό πεδίο κυκλικού ρευµατοφόρου αγωγού.

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ = Ο. Μαγνητικό πεδίο ευθύγραµµου ρευµατοφόρου αγωγού. Μαγνητικό πεδίο κυκλικού ρευµατοφόρου αγωγού. ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ Μαγνητικό πεδίο είναι ο χώρος που έχει την ιδιότητα να ασκεί αγνητικές δυνάεις σε κατάλληλο υπόθεα (αγνήτες, ρευατοφόροι αγωγοί ) Το αγνητικό πεδίο το ανιχνεύουε ε την βοήθεια ιας αγνητικής

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις Θεµάτων Εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34

Ενδεικτικές Λύσεις Θεµάτων Εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34 Σύγχρονη ΦΥΕ4 4/7/ Ελληνικό Ανοικτό Πανεπιστήιο Ενδεικτικές Λύσεις Θεάτων Εξετάσεων στη Θεατική Ενότητα ΦΥΕ4 ΣΥΓΧΡΟΝΗ ιάρκεια: 8 λεπτά Ονοατεπώνυο: Τήα: Θέα ο (Μονάδες:.5) Από τη συνέχεια της κυατοσυνάρτησης

Διαβάστε περισσότερα

ΙΚΤΥΑ ΠΑΡΑΓΩΓΗΣ C.A.M.

ΙΚΤΥΑ ΠΑΡΑΓΩΓΗΣ C.A.M. ΙΚΤΥΑ ΠΑΡΑΓΩΓΗΣ C.A.M. Aναονητικά Συστήατα, Γραές Παραγωγής, F.M.S. Γιάννης Α. Φίης Ιανουάριος 3 Πουτεχνείο Κρήτης Π Ε Ρ Ι Ε X Ο Μ Ε Ν Α EIΣΑΓΩΓΗ...3 ΟΥΡΕΣ H ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ...6. Μοντέα Γέννησης Θανάτου...

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ 6-- ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθό καθειάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράα που αντιστοιχεί στη σωστή απάντηση. ) Η ταχύτητα

Διαβάστε περισσότερα

Martingales. Κεφάλαιο Εισαγωγή. 4.2 εσευένη έση τιή

Martingales. Κεφάλαιο Εισαγωγή. 4.2 εσευένη έση τιή Κεφάλαιο 4 Martingales 4.1 Εισαγωγή Στο κεφάλαιο αυτό θα εισαγάγουε την έννοια της δεσευένης έσης τιής για διακριτές τυχαίες εταβλητές και θα δούε πότε χαρακτηρίζουε ια στοχαστική διαδικασία διακριτού

Διαβάστε περισσότερα

ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ SET02: ΜΕΓΕΘΟΣ ΑΓΟΡΑΣ

ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ SET02: ΜΕΓΕΘΟΣ ΑΓΟΡΑΣ ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ ΟΡΙΣΜΟΣ - ΣΚΟΠΙΜΟΤΗΤΑ Ο δείκτης προσδιορίζει το ύψος του Ακαθάριστου Εγχώριου Προϊόντος (ΑΕΠ) ανά Περιφέρεια και Νοό και εκφράζει το έγεθος της αγοράς, η οποία δυνητικά ενοποιείται

Διαβάστε περισσότερα

Η. ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ A ΚΑΙ Α. Στην Άσκηση IV.ΣΤ.14 δείξαµε ότι, κάτω από την υπόθεση οµοιόµορφης κατανοµής των

Η. ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ A ΚΑΙ Α. Στην Άσκηση IV.ΣΤ.14 δείξαµε ότι, κάτω από την υπόθεση οµοιόµορφης κατανοµής των Η ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΚΑΙ Α Στην Άσηση IVΣΤ4 είξε ότι, άτω πό την πόθεση οοιόορφης τνοής των + θνάτων σε άθε έτος ηλιίς (UDD, + q Η ισότητ τή είχνει ότι, άτω πό την πόθεση UDD, τ ενιί σφάλιστρ ι ινοποιούν τη

Διαβάστε περισσότερα

EIOPA(BoS(13/164 EL. Κατευθυντήριες γραές για την εξέταση αιτιάσεων από ασφαλιστικούς διαεσολαβητές

EIOPA(BoS(13/164 EL. Κατευθυντήριες γραές για την εξέταση αιτιάσεων από ασφαλιστικούς διαεσολαβητές EIOPA(BoS(13/164 EL Κατευθυντήριες γραές για την εξέταση αιτιάσεων από ασφαλιστικούς διαεσολαβητές EIOPA WesthafenTower Westhafenplatz 1 60327 Frankfurt Germany Phone: +49 69 951119(20 Fax: +49 69 951119(19

Διαβάστε περισσότερα

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ 2

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ 2 ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΝΤΑΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΠΑΡΑΔΟΣΕΙΣ ΔΕΚΕΜΒΡΙΟΣ 006 ΕΙΣΑΓΩΓΗ.... ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΥΗΜΕΡΙΑΣ... 3. Τα θεελιώδη θεωρήατα της

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΑ ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ Τήα Επιστήης και Τεχνολογίας Υλικών Πανεπιστήιο Κρήτης Γιώργος Κιοσέογλου ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ 4. ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ ΤΟΥ ΠΑΡΑΜΑΓΝΗΤΙΣΜΟΥ Τα κύρια συπεράσατα της κλασσικής θεωρίας τροποποιούνται

Διαβάστε περισσότερα

και A του 1 Α) 0,048 Β) 0,288 Γ) 0,353 Δ) 0,440 Ε) 0, Για κάποια ηλικία x είναι lx t βρεθεί η τιμή του l x. Α) 99 Β) 101 Γ) 103 Δ) 111 Ε) 115

και A του 1 Α) 0,048 Β) 0,288 Γ) 0,353 Δ) 0,440 Ε) 0, Για κάποια ηλικία x είναι lx t βρεθεί η τιμή του l x. Α) 99 Β) 101 Γ) 103 Δ) 111 Ε) 115 . Η πιθανότητα ο () να ζήσει για τουλάχιστον χρόνια είναι κατά 0% μεγαλύτερη από την πιθανότητα ο (+) να ζήσει για τουλάχιστον χρόνια. Αν / 0, 4, 9 / 0, και 0, 48 να βρεθεί η τιμή του Α) 0,048 Β) 0,88

Διαβάστε περισσότερα

Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας

Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας Ο δεύτερος νόος του Νεύτωνα για σύστηα εταβλητής άζας Όταν εξετάζουε ένα υλικό σύστηα εταβλητής άζας, δηλαδή ένα σύστη α που ανταλλάσσει άζα ε το περιβάλλον του, τότε πρέπει να είαστε πολύ προσεκτικοί

Διαβάστε περισσότερα

Στην Στατιστική Φυσική και στην Θερµοδυναµική αποδεικνύεται ότι δύο συστήµατα που δεν είναι θερµικά µονωµένα, σε ισορροπία έχουν την ίδια

Στην Στατιστική Φυσική και στην Θερµοδυναµική αποδεικνύεται ότι δύο συστήµατα που δεν είναι θερµικά µονωµένα, σε ισορροπία έχουν την ίδια ΦΥΣ 347: Υπολογιστική Φυσική Eβδοάδα 3 3. Μέθοδος etropols onte Carlo. Oι έθοδοι τύπου etropols onte Carlo εφαρόζονται για την ελέτη κλασσικών και κβαντικών συστηάτων (ε Ν>> βαθούς ελευθερίας σε ισορροπία.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 1 ης ΕΡΓΑΣΙΑΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 1 ης ΕΡΓΑΣΙΑΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 34 7-8 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ης ΕΡΓΑΣΙΑΣ Προθεσία παράδοσης 6//7 Άσκηση Α) Οι δυνάεις που δρουν σε κάθε άζα φαίνονται στο Σχήα. Αναλύοντας σε ορθογώνιο σύστηα αξόνων (διακεκοένες

Διαβάστε περισσότερα

Κεφάλαιο 4. Θεωρήµατα οµής

Κεφάλαιο 4. Θεωρήµατα οµής Κεφάαιο 4 Θεωρήαα οής Σ' αυό ο εφάαιο θ αποδείξουε α Θεωρήαα οής για πεπερασένα παραγόενα R-πρόυπα, όπου R αέραια περιοχή υρίων ιδεωδών, (απι) 4 Ανάυση σε άθροισα περιοδιού αι εεύθερου, ανάυση σοιχείο

Διαβάστε περισσότερα

Θηκόγραμμα (box-plot) Γραφική παρουσίαση των μέτρων θέσης μιας μεταβλητής

Θηκόγραμμα (box-plot) Γραφική παρουσίαση των μέτρων θέσης μιας μεταβλητής Έχουε δει ότι ένα βαικό ειονέκτηα του αριθητικού έου είναι ότι είναι ευαίθητος ε ακραίες παρατηρήεις. Θηκόγραα (bo-plot) Γραφική παρουίαη των έτρων θέης ιας εταβλητής Ένας ιοταθιένος (p %) αριθητικός έος

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ΣΧΟΛΗ Ν. ΟΚΙΜΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ & Η/Υ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ρ. Α. ΜΑΓΟΥΛΑΣ Επικ. Καθηγητης Σ.Ν.. 13 I ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗΝ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 Συστήατα συντεταγένων

Διαβάστε περισσότερα

Κεφάλαιο 9: Ελεύθερα Ηλεκτρόνια σε Μαγνητικό Πεδίο. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών

Κεφάλαιο 9: Ελεύθερα Ηλεκτρόνια σε Μαγνητικό Πεδίο. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Σχολή Εφαροσένων Μαθηατικών και Φυσικών Επιστηών Εθνικό Μετσόβιο Πολυτεχνείο Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Κεφάλαιο 9: Ελεύθερα Ηλεκτρόνια σε Μαγνητικό Πεδίο Λιαροκάπης Ευθύιος Άδεια

Διαβάστε περισσότερα

ας γ γ ν[ασ] ου ατ κα

ας γ γ ν[ασ] ου ατ κα ε α να [ηπ] τ κ ς α κ ησ ε ε ς π λ σ υ ε ' ωετ ρ ας ν[ασ] ου ατ κα [ ] ε λ [ ] ε λ 2 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ... 4 ΙΣΑ ΤΜΗΜΑΤΑ ΜΕΤΑΞΥ ΠΑΡΑΛΛΗΛΩΝ ΕΥΘΕΙΩΝ... 8 ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ... 15 ΟΜΟΙΑ ΤΡΙΓΩΝΑ...

Διαβάστε περισσότερα

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Α Α Π Σ Δ 10: Δ Γ -Θ Καθ Γιάννης Γαροφαάκης ΜΔΕ Επιστήης και Τεχνοογίας Υποογιστών Τήα Μηχανικών Η/Υ & Πηροφορικής Διαδικασίες Γεννήσεων-Θανάτων Defini on (Birth-Death-Process (BDP)) Μία στοχαστική διαδικασία

Διαβάστε περισσότερα

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΑΣΑΦHΣ ΛΟΓΙΚΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΤΙΚΟΣ ΣΥΛΛΟΓΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 6 ΑΣΑΦHΣ ΛΟΓΙΚΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΤΙΚΟΣ ΣΥΛΛΟΓΙΣΜΟΣ ΚΕΦΑΛΑΙΟ 6 ΑΣΑΦHΣ ΛΟΓΙΚΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΤΙΚΟΣ ΣΥΛΛΟΓΙΣΜΟΣ 6. ΑΠΟ ΤΗΝ ΚΛΑΣΙΚΗ ΣΤΗΝ ΑΣΑΦΗ ΛΟΓΙΚΗ Η θεωρία της λογικής (Logc theory) ελετά τις εθόδους και τις αρχές του συλλογισού (Reasog), δηλαδή, ε ποιο τρόπο

Διαβάστε περισσότερα

... λέγονται στοιχεία του πίνακα Α και οι δείκτες i και j δηλώνουν τη γραμμή και τη στήλη, αντίστοιχα, που ανήκει το στοιχείο α

... λέγονται στοιχεία του πίνακα Α και οι δείκτες i και j δηλώνουν τη γραμμή και τη στήλη, αντίστοιχα, που ανήκει το στοιχείο α ΚΕΦΑΛΑΙΟ 2 ΠΙΝΑΚΕΣ Στο Κεφάλαιο αυτό θα ασχοληθούε ε το ορισό και τις στοιχειώδεις ιδιότητες τω πιάκω, που είαι ορθογώιες παρατάξεις αριθώ ή άλλω στοιχείω Οι πίακες εφαίζοται στη θεωρία τω γραικώ συστηάτω,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ. Αναπλ. Καθηγητής Μιχαήλ Γεωργιάδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ. Αναπλ. Καθηγητής Μιχαήλ Γεωργιάδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ 6 ου ΕΞΑΜΗΝΟΥ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ Αναπλ. Καθηγητής Μιχαήλ Γεωργιάδης Απρίλιος 8 ΜΕΡΟΣ Ι ΒΑΣΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

2. Ποιά από τις παρακάτω γραφικές παραστάσεις αντιστοιχεί στο νόµο του Ohm; (α) (β) (γ) (δ)

2. Ποιά από τις παρακάτω γραφικές παραστάσεις αντιστοιχεί στο νόµο του Ohm; (α) (β) (γ) (δ) ΘΕΜΑ ο Στις ερωτήσεις - 4 να γράψετε στο τετράδιό σας τον αριθό της ερώτησης και δίπλα το γράα που αντιστοιχεί στη σωστή απάντηση.. Πυκνωτής χωρητικότητας είναι φορτισένος ε φορτίο Q και η τάση στους οπλισούς

Διαβάστε περισσότερα

Για τις προτάσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή επιλογή.

Για τις προτάσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή επιλογή. ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Σεπτέβριος 016 ΘΕΜΑ A Για τις προτάσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθό της πρότασης και, δίπλα, το γράα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΧΙΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ ΙΙ Α. ΓΕΝΙΚΕΥΜΕΝΕΣ ΑΠΟ ΚΟΙΝΟΥ ΠΙΘΑΝΟΤΗΤΕΣ. Στα όσα προηγήθηκαν, εξετάσαµε δύο "ακραία" καθεστώτα x1x

ΧΙΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ ΙΙ Α. ΓΕΝΙΚΕΥΜΕΝΕΣ ΑΠΟ ΚΟΙΝΟΥ ΠΙΘΑΝΟΤΗΤΕΣ. Στα όσα προηγήθηκαν, εξετάσαµε δύο ακραία καθεστώτα x1x ΧΙΙΙ ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ ΙΙ Α ΓΕΝΙΚΕΥΜΕΝΕΣ ΑΠΟ ΚΟΙΝΟΥ ΠΙΘΑΝΟΤΗΤΕΣ Στ όσ προηγήθηκν, εξετάσε δύο "κρί" κθεστώτ κθεστώτος προϋποθέτει την επιβίωση όλων των, (,, ( ( ( (η "επιβίωση" του κι το κθεστώς "λύετι"

Διαβάστε περισσότερα

Σελίδα 1 από 16 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011

Σελίδα 1 από 16 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 14 ΙΟΥΛΙΟΥ 2011 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ. 12 µ.) Σελίδα 1 από

Διαβάστε περισσότερα

Εκτίµηση άγνωστων κατανοµών πιθανότητας

Εκτίµηση άγνωστων κατανοµών πιθανότητας KE 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Εκτίηση άγνωστων κατανοών πιθανότητας ΤήαΕπιστήης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήιο Πελοποννήσου 7 coas Tsaatsous Εισαγωγή Παραετρικές έθοδοι Μη παραετρικές

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016 Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: X Θεματική ενότητα: () 1. Α. Με επιτόκιο i=3,5% και πίνακα θνησιμότητας με q 108 =1, υπολογίστε το A και το (), χρησιμοποιώντας την υπόθεση της ομοιόμορφης κατανομής

Διαβάστε περισσότερα

2/6. 1 ΕΕ L 158 της , σ ΕΕ L 335 της , σ.1. 3 ΕΕ L 331 της , σ

2/6. 1 ΕΕ L 158 της , σ ΕΕ L 335 της , σ.1. 3 ΕΕ L 331 της , σ EIOPA16/858 EL Κατευθυντήριες γραές σχετικά ε τη διευκόλυνση του αποτελεσατικού διαλόγου εταξύ των αρόδιων αρχών εποπτείας των ασφαλιστικών επιχειρήσεων, του νόιου ελεγκτή/των νόιων ελεγκτών και του ελεγκτικού

Διαβάστε περισσότερα

Q U A N T U M E L E C T R O D Y N A M I C S

Q U A N T U M E L E C T R O D Y N A M I C S Q U A N T U M E L E C T R O D Y N A M I C S ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Στα πλαίσια του Μεταπτυχιακού προγράατος σπουδών. ΙΩΑΝΝΗΣ Ε. ΣΦΑΕΛΟΣ 3 ΠΕΡΙΕΧΟΜΕΝΑ. Κανόνες Feynman. Ελαστική σκέδαση ηλεκτρονίου

Διαβάστε περισσότερα

Κεφάλαιο 6: Διαμαγνητισμός και Παραμαγνητισμός. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών

Κεφάλαιο 6: Διαμαγνητισμός και Παραμαγνητισμός. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Σχολή Εφαροσένων Μαθηατικών και Φυσικών Επιστηών Εθνικό Μετσόβιο Πολυτεχνείο ιηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Κεφάλαιο 6: ιααγνητισός και Παρααγνητισός Λιαροκάπης Ευθύιος Άδεια Χρήσης

Διαβάστε περισσότερα

ΦΥΣΙΚΗ και αν συνεχίζει να αυξάνεται η συχνότητα του διεγέρτη, το πλάτος της εξαναγκασµένης ταλάντωσης διαρκώς θα µειώνεται.

ΦΥΣΙΚΗ και αν συνεχίζει να αυξάνεται η συχνότητα του διεγέρτη, το πλάτος της εξαναγκασµένης ταλάντωσης διαρκώς θα µειώνεται. ΦΥΣΙΚΗ - ΘΕΜΑ ο : Α Να επιλέξετε σε άθε ερώτηα την σωστή πρόταση Σε ένα στάσιο ύα που έχει δηιουργηθεί σε ια ελαστιή χορδή, η διαφορά φάσης εταξύ δύο ορίων του που απέχουν εταξύ τους απόσταση χ: χ Α) δίνεται

Διαβάστε περισσότερα

Διάδοση των Μιονίων στην Ύλη

Διάδοση των Μιονίων στην Ύλη 4 Διάδοση των Μιονίων στην Ύλη Εισαγωγή Σε αυτό το Κεφάλαιο περιγράφουε τις φυσικές διαδικασίες που συνεισφέρουν στην απώλεια ενέργειας ενός ιονίου καθώς αυτό διαδίδεται σε ένα έσο, όπως το νερό ή ο πάγος.

Διαβάστε περισσότερα

(9.1) (9.2) B E = t (9.3) (9.4) (9.5) J = t

(9.1) (9.2) B E = t (9.3) (9.4) (9.5) J = t ΣΗΜΕΙΩΣΕΙΣ Λ. Περιβολαροπουλος ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWELL Σκοπός Το κεφάλαιο αυτό έχει τέσσερις βασικούς στόχους. Πρώτον, τη ελέτη των εξισώσεων του Maxwell στην τελική τους ορφή, όπου περιλαβάνεται και

Διαβάστε περισσότερα

Ανίχνευση Νετρίνων Εισαγωγή

Ανίχνευση Νετρίνων Εισαγωγή 3 Ανίχνευση Νετρίνων Εισαγωγή Τα νετρίνα ανιχνεύονται από τηλεσκόπια Cherenkov έσω της παρατήρησης της ακτινοβολίας Cherenkov (βλέπε Παράγραφο 4.1) που εκπέπεται από τα φορτισένα σωάτια που παράγονται

Διαβάστε περισσότερα

Μάθημα 3 ο. Στοιχεία Θεωρίας Ελαστικών Κυμάτων

Μάθημα 3 ο. Στοιχεία Θεωρίας Ελαστικών Κυμάτων Μάθηα ο Στοιχεία Θεωρίας Ελαστικών Κυάτων Εξίσωση της Κίνησης Εξίσωση του Κύατος Εξίσωση Διανυσατικού Κύατος Στάσια Κύατα Ελαστικά Κύατα Χώρου Επιφανειακά Κύατα ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΕΙΣΜΟΛΟΓΙΑ Μάθηα ο: Στοιχεία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΣΙ ΗΡΟΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ ΜΑΓΝΗΤΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΚΕΦΑΛΑΙΟ 8 ΣΙ ΗΡΟΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ ΜΑΓΝΗΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΕΑΛΑΙΟ 8 ΚΕΑΛΑΙΟ 8 ΣΙ ΗΡΟΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ ΜΑΓΝΗΤΙΚΑ ΚΥΚΛΩΜΑΤΑ 8. Μαγνήτες, πόλοι, αγνήτιση Στην κλασική ιστορική θεώρηση των αγνητικών φαινοένων ία αγνητισένη ράβδος χαρακτηρίζεται από δύο πόλους, ένα

Διαβάστε περισσότερα

Τα βασικά χρηατοοικονοικά παράγωγα και η αρχή της η επιτηδειότητας

Τα βασικά χρηατοοικονοικά παράγωγα και η αρχή της η επιτηδειότητας Κεφάλαιο 1 Τα βασικά χρηατοοικονοικά παράγωγα και η αρχή της η επιτηδειότητας 1.1 Εισαγωγή Στο παρόν κεφάλαιο θα ιλήσουε για την αξία του χρήατος στον χρόνο, θα γνωρίσουε τα βασικότερα χρηατοοικονικά παράγωγα,

Διαβάστε περισσότερα

Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!!

Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: X Θεματική ενότητα: Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! 1/6 1) A.Για μία ειδική πλήρως διακριτή πρόσκαιρη ασφάλιση θανάτου διάρκειας 10 ετών αυξανόμενου

Διαβάστε περισσότερα

( ) ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ ΜΑΧWELL KAI TA ΠΕ ΙΑ Β ΚΑΙ Η. Κ.Ε.Αργυρόπουλος ιδάκτωρ Φυσικής Ε.Μ.Π Σχ.Σύµβουλος ΠΕ04 ( J)

( ) ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ ΜΑΧWELL KAI TA ΠΕ ΙΑ Β ΚΑΙ Η. Κ.Ε.Αργυρόπουλος ιδάκτωρ Φυσικής Ε.Μ.Π Σχ.Σύµβουλος ΠΕ04 ( J) ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ ΜΑΧWELL KAI TA ΠΕ ΙΑ Β ΚΑΙ Η. Κ.Ε.Αργυρόπουλος ιδάκτωρ Φυσικς Ε.Μ.Π Σχ.Σύβουλος ΠΕ4. Οι εξισώσεις Maxwell Η κατάσταση στην οποία βρισκόταν η ηλεκτροαγνητικ θεωρία πάνω από ένα αιώνα πριν

Διαβάστε περισσότερα

ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ

ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Κ Ι ΚΟΥΤΣΟΠΟΥΛΟΣ ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ (ΠΕΡΙΛΗΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΩΝ ΠΑΡΑ ΟΣΕΩΝ ΚΑΙ ΑΣΚΗΣΕΙΣ) ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Διάκριση Μαθηματικών Οικονομικές συναρτήσεις Ορισμοί Μαθηματικά στα οικονομικά φαινόμενα Βελτιστοποίηση κερδών Μέτρηση χρησιμότητας Οριακά μεγέθη Ελαστικότητα Πολλαπλασιαστής

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016 Όνομα: Επίθετο: Ημερομηνία: Πρωί: X Απόγευμα: Θεματική ενότητα: 1. Μια ισόβια ασφάλιση, με ασφαλισμένο κεφάλαιο ύψους 1, πληρωτέο τη χρονική στιγμή του θανάτου του (x), περιλαμβάνει πρόσθετη κάλυψη (rider),

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

= = = = N N. Σηµείωση:

= = = = N N. Σηµείωση: Ανάλογα ε τα φορτία που αναπτύσσονται σε ια διατοή ακολουθείται διαφορετική διαδικασία διαστασιολόγησης. 1 Φορτία ιατοής Καθαρή Κάψη Ροπή M σε ια διεύθυνση Προέχουσα Κάψη+Θλίψη Ροπή M σε ια διεύθυνση ε

Διαβάστε περισσότερα

ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ ΠΥΡΟΣ

ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ ΠΥΡΟΣ ΚΛΑΟΣ ΙΑΧΕΙΡΙΣΗΣ Αριθός 15SYMV002516827 Ασφαλιστηρίου Ηεροηνία 2015-01-05 Έκδοσης 30/12/2014 Συνεργάτης 3500 Αρχικό Ασφαλιστήριο ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ Λήπτης της Ασφάλισης Ονοατεπώνυο.ΗΜΟΣ ΛΑΡΙΣΑΣ Οδός/Αριθός

Διαβάστε περισσότερα

Engagement Letter ε τον

Engagement Letter ε τον Engagement Letter ε τον 14SYMV001922384 2014-03-14 ΗΜΟ ΧΕΡΣΟΝΗΣΟΥ Σύναψη Σύβασης ε τον ΗΜΟ ΧΕΡΣΟΝΗΣΟΥ για τη διενέργεια του τακτικού ελέγχου της χρήσεως 2012 Προς το ηοτικό Συβούλιο ΗΜΟΥ ΧΕΡΣΟΝΗΣΟΥ Γούρνες

Διαβάστε περισσότερα

Ασαφής Λογική & Έλεγχος

Ασαφής Λογική & Έλεγχος Τεχνητή Νοηοσύνη 7 σαφής Λογική & Έλεγχος Φώτης Κόκκορας ΤΕΙ Θεσσαλίας Τήα Μηχανικών Πληροφορικής (Fuzzy Logic Fuzzy Control) Η σαφής Λογική (Fuzzy Logic)......δεν είναι καθόλου...ασαφής ή ανακριβής, όπως

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Μάθηµα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις

Μάθηµα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις Μάθηα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ 7 ου εξαήνου ΣΕΜΦΕ ΘΕΩΡΙΑ ΑΝΑΜΟΝΗΣ - ΑΝΑΛΥΣΗ ΕΠΙ ΟΣΗΣ ΙΚΤΥΩΝ Ασκήσεις Αποστέλλονται πακέτα σταθεού ήκους ytes από τον κόβο # στον κόβο #4 έσω των κόβων # και #3 σε σειά, όπως

Διαβάστε περισσότερα

υναική του Συστήατος Lorenz

υναική του Συστήατος Lorenz ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΝ Πρόγραα Μεταπτυχιακών Σπουδών Μαθηατική Μοντελοποίηση Στις Φυσικές Επιστήες και τις Σύγχρονες Τεχνολογίες Μεταπτυχιακή Εργασία υναική του Συστήατος Lorenz ΚΟΛΑΖΑ ΕΥΓΕΝΙΑ

Διαβάστε περισσότερα

ΑΤΟΜΟ Υ ΡΟΓΟΝΟΥ. ΜΟΝΤΕΛΟ BOHR.

ΑΤΟΜΟ Υ ΡΟΓΟΝΟΥ. ΜΟΝΤΕΛΟ BOHR. Μάθηα 3 ο, Οκτωβρίο 008 (9:00-:00). ΑΤΟΜΟ Υ ΡΟΓΟΝΟΥ. ΜΟΝΤΕΛΟ BOHR. Φάσα το δρογόνο (93) Γραικό φάσα Boh: εξήγησε την ακτινοβολία το ατόο Η. Ruthfod: πρήνας σγκεντρωένος σε ικρή περιοχή (D~0-5 ) Απόσπαση

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΟΥ ΚΑΙ ΟΜΙΛΙΑΣ ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤ. ΕΚΠ/ΣΗΣ ΙΟΥΝΙΟΣ 2005

ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΟΥ ΚΑΙ ΟΜΙΛΙΑΣ ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤ. ΕΚΠ/ΣΗΣ ΙΟΥΝΙΟΣ 2005 ΑΪΒΑΛΗ ΕΛΕΝΗ ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΠΙΤΡΟΠΗ ΕΡΕΥΝΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤ. ΕΚΠ/ΣΗΣ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΠΡΟΓΡΑΜΜΑ ΕΞΕΙΔΙΚΕΥΣΗ! ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΟΥ ΚΑΙ ΟΜΙΛΙΑΣ ΙΟΥΝΙΟΣ 2005 ΕΠΙΣΤΗΜΟΝΙΚΟΣ

Διαβάστε περισσότερα

Εισαγωγή στη Μαθηατική Χρηατοοικονοία

Εισαγωγή στη Μαθηατική Χρηατοοικονοία ΜΙΧΑΛΗΣ ΛΟΥΛΑΚΗΣ Αναπληρωτής Καθηγητής Σχολή Εφαροσένων Μαθηατικών & Φυσικών Επιστηών Εθνικό Μετσόβιο Πολυτεχνείο Εισαγωγή στη Μαθηατική Χρηατοοικονοία Εισαγωγή στη Μαθηατική Χρηατοοικονοία Συγγραφή Μιχάλης

Διαβάστε περισσότερα

1. Μαγνητικό Πεδίο Κινούμενου Φορτίου. Το μαγνητικό πεδίο Β σημειακού φορτίου q που κινείται με ταχύτητα v είναι:

1. Μαγνητικό Πεδίο Κινούμενου Φορτίου. Το μαγνητικό πεδίο Β σημειακού φορτίου q που κινείται με ταχύτητα v είναι: 1. Μαγνητικό Πεδίο Κινούενου Φορτίου Το αγνητικό εδίο Β σηειακού φορτίου q ου κινείται ε ταχύτητα v είναι: qv u 4 qvsinφ 4 Το Β είναι ανάλογο του q και του 1/ όως και το Ε. Το Β δεν είναι ακτινικό, είναι

Διαβάστε περισσότερα

Η Μέθοδος Παραγοντοποίησης Ακεραίων Αριθών Number Field Sieve: Θεωρία και Υλοποίηση. Νικόλαος Καραπάνος

Η Μέθοδος Παραγοντοποίησης Ακεραίων Αριθών Number Field Sieve: Θεωρία και Υλοποίηση. Νικόλαος Καραπάνος Η Μέθοδος Παραγοντοποίησης Ακεραίων Αριθών Number Field Sieve: Θεωρία και Υλοποίηση Νικόλαος Καραπάνος Master Thesis Επιβλέπων: Παύλος Σπυράκης, Καθηγητής Τήα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήιο Πατρών

Διαβάστε περισσότερα

Μαγνητική ροπή. SI: Am 2

Μαγνητική ροπή. SI: Am 2 Μαγνητική ροπή Ι Ι Ι I S SI: Μαγνητική ροπή Η αγνητική διπολική ροπή είναι ια βασική ποσότητα για τον αγνητισό (όπως είναι το φορτίο για τον ηλεκτρισό) γιατί καθορίζει: (α) το αγνητοστατικό πεδίο που παράγει

Διαβάστε περισσότερα

Μέτρηση του χρόνου ζωής του µιονίου

Μέτρηση του χρόνου ζωής του µιονίου ΕΡΓΑΣΤΗΡΙΟ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ II Χ. Πετρίδου,. Σαψωνίδης Μέτρηση του χρόνου ζωής του ιονίου Σκοπός Το ιόνιο είναι το δεύτερο ελαφρύτερο λεπτόνιο στο standard Model ε ια άζα περίπου 106 MeV. Έχει spin ½

Διαβάστε περισσότερα

EIOPACP 13/011 EL. Κατευθυντήριες γραές σχετικά ε την. προαίτηση εσωτερικών υποδειγάτων

EIOPACP 13/011 EL. Κατευθυντήριες γραές σχετικά ε την. προαίτηση εσωτερικών υποδειγάτων EIOPACP 13/011 EL Κατευθυντήριες γραές σχετικά ε την προαίτηση εσωτερικών υποδειγάτων EIOPA Westhafen Tower, Westhafenplatz 1 60327 Frankfurt Germany Tel. + 49 6995111920; Fax. + 49 6995111919; site: www.eiopa.europa.eu

Διαβάστε περισσότερα

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ;

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΗΛΕΚΤΡΟΝΙΚΗ ΠΟΥ ΥΠΑΡΧΕΙ; Τηλει κοινω Τηλε νίες Υγεία Ροο τική Ηλεκτρονική Διοίκηση Υολο γιστές Διασκέδαση Η ΠΟΛΗ ΚΑΙ ΤΟ ΚΥΚΛΩΜΑ Ο Νόος το Mooe: «Ο αριθός των τρανζίστορ

Διαβάστε περισσότερα

Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 )

Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 ) Μέρος IV Πολυδιάστατες τυχαίες μεταβλητές Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Παν. Ιωαννίνων Δ5 ( ) Πολυδιάστατες μεταβλητές Πολλά ποσοτικά χαρακτηριστικά που σχετίζονται με

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασός Στοχαστικών Συστηάτων Ακαδ. Έτος 2018-2019 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής

Διαβάστε περισσότερα

Μπαεσιανοί Ταξινοµητές (Bayesian Classifiers)

Μπαεσιανοί Ταξινοµητές (Bayesian Classifiers) KE 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μπαεσιανοί Ταξινοητές Bayesan Classfers ΤήαΕπιστήης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήιο Πελοποννήσου 7 Ncolas Tsapatsouls Εισαγωγή Θεωρία Bayes και

Διαβάστε περισσότερα

Παροχή Προστασίας Ασφαλίστρου

Παροχή Προστασίας Ασφαλίστρου ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΣΥΜΒΟΛΑΙΟ ΠΑΡΟΧΗΣ ΠΡΟΣΤΑΣΙΑΣ Α ΣΦΑΛΙΣΤΡΟΥ 1. ΔΙΑΤΑΞΕΙΣ ΚΑΙ ΟΡΟΙ Αυτό το Συμπληρωματικό Συμβόλαιο αποτελεί μέρος του Βασικού Ασφαλιστηρίου, στο οποίο είναι προσαρτημένο και ισχύει μόνο στην

Διαβάστε περισσότερα

Θέματα Κοινωνικής Ασφάλισης. Βασικές μεταβολές του Ν. 4387/2016 στο ασφαλιστικό σύστημα

Θέματα Κοινωνικής Ασφάλισης. Βασικές μεταβολές του Ν. 4387/2016 στο ασφαλιστικό σύστημα Θέματα Κοινωνικής Ασφάλισης Βασικές μεταβολές του Ν. 4387/2016 στο ασφαλιστικό σύστημα Φεβρουάριος 2017 ΠΕΡΙΕΧΟΜΕΝΑ Βασικές μεταβολές του Ν. 4387/2016 στο ασφαλιστικό σύστημα: Συνοπτική παρουσίαση... 3

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίνος Ιωάννου, Στέφανος Γεροντόπουλος, Σταυρούλα Γκιτάκου

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίνος Ιωάννου, Στέφανος Γεροντόπουλος, Σταυρούλα Γκιτάκου ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 19/03/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίος Ιωάου, Στέφαος Γεροτόπουλος, Σταυρούλα Γκιτάκου ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α5 α γράψετε στο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΤΑΝΥΣΤΩΝ. 1. Εισαγωγικά. Υποθέτουµε ότι ο αναγνώστης γνωρίζει τα περιεχόµενα στην ενότητα Γραµµικές Μορφές.

ΑΛΓΕΒΡΑ ΤΑΝΥΣΤΩΝ. 1. Εισαγωγικά. Υποθέτουµε ότι ο αναγνώστης γνωρίζει τα περιεχόµενα στην ενότητα Γραµµικές Μορφές. ΑΛΓΕΒΡΑ ΤΑΝΥΣΤΩΝ Εισαγωγιά Υποθέτουε ότι ο ααγώστης γωρίζει τα περιεχόεα στη εότητα Γραιές Μορφές Γειές υποθέσεις Συβοισοί Ο χώρος, στοιχεία του οποίου χρησιοποιούε, είαι έας γραιός (αυσατιός) χώρος V

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 5 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος-Ειδικότητες: ΠΕ 15 ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ, ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ, ΦΥΣΙΚΩΝ ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΩΝ

Διαβάστε περισσότερα

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Σ Χ Ο Λ Η Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Ω Ν Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Κ Α Ι Φ Υ Σ Ι Κ Ω Ν Ε Π Ι Σ Τ Η Μ Ω Ν Επαναληπτική εξέταση στο άθηα Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ ΕΙ

Διαβάστε περισσότερα

14SYMV

14SYMV ΣΥΜΒΑΣΗ ΣΥΝΤΗΡΗΣΗΣ ΥΠΟΣΤΗΡΙΞΗΣ ΤΟΥ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΕΡΓΑΣΤΗΡΙΝ slis Enterprise LIS ΚΑΙ ΤΟΥ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΛΙΝΙΚΝ slis Enterprise Ward ΤΟΥ ΕΙ$ΙΚΟΥ ΑΝΤΙΚΑΡΚΙΝΙΚΟΥ ΝΟΣΟΚΟΜΕΙΟΥ ΠΕΙΡΑΙΑ «ΜΕΤΑΞΑ»

Διαβάστε περισσότερα