ΣΤ. ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΤ. ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM"

Transcript

1 ΣΤ ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM Όπως σηειώσαε παραπάνω, οι πιθανότητες που εξαρτώνται από τη σειρά των θανάτων πορούν να εφρασθούν συναρτήσει "πιθανοτήτων πρώτου θανάτου" Κατά συνέπεια, θα περιορίσουε τη ελέτη των από οινού πιθανοτήτων Gmer των από οινού πιθανοτήτων Makeham στις πιθανότητες συγεριένα στις σχέσεις που ισχύουν εταξύ Όσο για τις πιθανότητες, θα προχωρήσουε στον ορισό ιας "ισοδύναης ηλιίας" που, ατά άποιο τρόπο (διαφορετιό για την Gmer για την Makeham, αντιαθιστά το αθεστώς πολλών ζωών ( Υποθέτουε ότι η επιβίωση των ( ( διέπεται από τον ίδιο νόο Gmer B ( g ( e l Στην ανάλυση που θα αολουθήσει θα γράψουε απλά αφού η οπτιή παρουσία των παραστάσεων που επροσωπούν τα δεν είναι αναγαία για την εξαγωγή των επιδιωόενων συπερασάτων Όταν ισχύει ο νόος Gmer, η πιθανότητα d γίνεται B d ( B B d Εφόσον όως B B, το τελευταίο ολολήρωα είναι απλά βλέπουε ότι Είναι προφανές εξάλλου ότι η διαδιασία που αολουθήσαε λειτουργεί εξίσου αλά για οποιοδήποτε πλήθος ζωών, άρα γενιά Για να υπολογίσουε το ένταση θνησιότητας, εισάγουε την έννοια ιας "ισοδύναης ζωής" ( τέτοιας ώστε η να είναι ίδια ε την ένταση θνησιότητας του αθεστώτος ( Αν l(, τότε B B B (Το δεν θα είναι γενιά l αέραιος, πορούε όως να εργασθούε ε την αέραια ηλιία ~ ή, για εγαλύτερη αόα ασφάλεια, ε την αέραια ηλιία έχουε όνο [ ] [ ] ~ Σηειώνουε ότι, αν, δεν αλλά, άρα αθώς (Άσηση Κατά συνέπεια, πορούε να αγνοήσουε τελείως το αθεστώς ( να υπολογίσουε πιθανότητες (, όπως θα δούε, ασφάλιστρα για τη ια ζωή (! Μετά από αυτό το συπέρασα, η σχέση ανάγεται σε Για τον υπολογισό λοιπόν του, αρεί ο υπολογισός της ισοδύναης ηλιίας ~ η χρήση του πίναα Gmer στην ηλιία ~ Για τον υπολογισό του χρειάζεται, πέραν του (δηλαδή του ~, η παράετρος του πίναα Gmer Φυσιά, η σχέση γενιεύεται αέσως σε l( l ε

2 Πέρα από τα παραπάνω, πορούε εύολα να οδηγηθούε σε ένα αόα χρήσιο συπέρασα που είναι γνωστό ως "νόος της οοιόορφης αρχαιότητας" (la f uifrm eiri Αν, χωρίς απώλεια γενιότητας, θέσουε >, από την συπεραίνουε ότι < < πορούε να γράψουε m Η σχέση m l( γίνεται οδηγεί σε m Βλέπουε ότι το ποσό που l πρέπει να προστεθεί στη ιρότερη ηλιία, για να προύψει η ισοδύναη ηλιία, εξαρτάται όνον από τη διαφορά ανάεσα στις ηλιίες όχι από τις ίδιες τις ηλιίες Έτσι, όποιος άνει τους υπολογισούς δεν έχει παρά να σηειώσει τη διαφορά ανάεσα στις ηλιίες των δύο ασφαλισένων, να ανατρέξει σε πίναα που δίνει την τιή του m που αντιστοιχεί σε άθε τιή της διαφοράς να γράψει m Η διαδιασία αυτή πορεί να γενιευθεί, αλλά γίνεται δύσχρηστη για περισσότερες από τρεις ζωές Στην περίπτωση του νόου Makeham, τα πράγατα είναι άπως πιο πολύπλοα Γράφουε ( A B d A e : ( B B d A e : ( : A d A e βλέπουε ότι στην περίπτωση Makeham, ετός από τον όρο, έχουε έναν όρο στον οποίο εφανίζεται η (προσωρινή έση διάρεια e : του αθεστώτος ( Η γενίευση σε ζωές είναι άεση : A : e Η παραπάνω σχέση απλοποιείται αόα περισσότερο επειδή ένας νόος οοιόορφης αρχαιότητας ισχύει για ατανοές Makeham Εξαιτίας όως της παρουσίας του Α στην A B δεν πορούε να ορίσουε ία όνο ισοδύναη ζωή ( ορίζουε ένα ισοδύναο αθεστώς ( που έχει το ίδιο πλήθος ζωών ε το αλλά αποτελείται από άτοα της ίδιας ηλιίας [Η αντιατάσταση των ( e ε : e ίσως δεν "φαντάζει" ως απλοποίηση, όως είναι γιατί η : ολολήρωση, πχ, του d d d ], που είναι άεση!] Αφήνεται ως Άσηση το γεγονός ότι η είναι δυσολότερη από την ολολήρωση του συνεπάγεται (α την ίδια σχέση ε i αντί (β τη σχέση αθεστώτος ( ( του γεγονότος ότι γράφεται A e : i Με χρήση του, η τιή του

3 Για δύο ζωές ( ( (, ο νόος οοιόορφης αρχαιότητας για ια ατανοή Makeham l( l για ( (m : m είναι m (Άσηση l Ο υπολογισός ενιαίων ασφαλίστρων όταν η ατανοή είναι Gmer ή Makeham γίνεται ατά τον ίδιο αριβώς τρόπο Οι σχέσεις για το εταφράζονται άεσα σε σχέσεις για το ενιαίο ασφάλιστρο A Για Gmer, A A A, όπου ( η ισοδύναη προς το ( ζωή, για Makeham, A α A, όπου ( οήλιες ζωές ισοδύναες προς το ( (Άσηση Ζ ΑΣΚΗΣΕΙΣ ίδονται,95,,9,, 85 Να βρεθούν τα,,,,,,, να ελεγχθεί η "εσωτεριή συνέπεια" των αποτελεσάτων (Απάντηση :,5,,,,5,,45,,95,,5,,75,,75 (i Αν,5, να δειχθεί ότι, για το αθεστώς ζωών (, (, 95 (ii Να δειχθεί ότι γενιά ( (i Να δειχθεί ότι, για αθεστώς ( ζωών, ότι ( ( (ii Να δειχθεί για ζωές ( 4 (i Να δειχθεί ότι ( (ii Ποια η αντίστοιχη σχέση για ; 5 Να δειχθεί ότι d [ ] [ ( ] d 6 (i Να βρεθεί (ii Εφόσον ότι : :, είναι : διολογείται το γεγονός ότι η e (Απάντηση : e < Πώς διολογείται αυτό το γεγονός πώς για τη συνάρτηση επιβίωσης ( e : : τείνει προς το όταν ; 7 (i Στην Άσηση 6, ποιες είναι οι σππ που αντιστοιχούν στις : : (Απάντηση : e e e (ii Ποιες οι αντίστοιχες συναρτήσεις επιβίωσης; (Απάντηση : e e e ;

4 8 (i Να βρεθούν τα για τη συνάρτηση επιβίωσης της Άσησης 5 (Απάντηση : ( e e ( e e ( e e πιθανοτήτων στο (i ; 9 ίδεται η συνάρτηση επιβίωσης (, (ii Τι παρατηρείτε για το άθροισα των δύο, δύο ζωές ηλιίας ( < < ηλιίας ( < (i Να βρεθεί η συνάρτηση ατανοής η συνάρτηση επιβίωσης < (Απάντηση : ( (, mi{, } (ii Να βρεθεί η αντίστοιχη σππ (Απάντηση : ( (, mi{, } (iii Να βρεθεί η : (Απάντηση : (απειρίζεται όταν το φθάσει το ιρότερο από τα Στην Άσηση 9, να βρεθεί η σ, για < υποθέτοντας (Απάντηση : > ( ( για (i Να βρεθούν τα (ii Να βρεθεί η για f( e e ( e (Απάντηση : : :: ( (Απάντηση : e e ( e ω (i Για τη συνάρτηση De Mivre (, να βρεθεί το για ω < ω < ω (Απάντηση : στο (i ω ω ω ω ω ω σε τι τα ω ω ; (ii Σε τι αντιστοιχεί ό όρος ( ( ( ( (i Να βρεθούν τα για τη συνάρτηση De Mivre ω ( ω ω ( ω ( ω παρατηρούε στο (i ισχύει γενιά για άθε συνάρτηση επιβίωσης ω (Απάντηση : (ii Να δειχθεί ότι η σχέση που 4 (i Να δειχθεί ότι για τη σππ f( e, οποιοδήποτε,,, (iii Να δειχθεί ότι (ii Να δειχθεί ότι! για

5 ω 5 (i Για (, να δειχθεί ότι ω ω αν > ω ω αν < ω (Αν, από τα δύο αποτελέσατα (ii Να δειχθεί ότι ω (iii Να δειχθεί ότι ω αν > αν < (Για, ω ω (iv Να δειχθεί ότι είναι το ίδιο στις δύο περιπτώσεις! αν >, όως ω αν <! (Το " " δεν ω 6 Να γραφούν τα, συναρτήσει πιθανοτήτων πρώτου θανάτου (Απάντηση :, 7 (i Να γραφεί το συναρτήσει πιθανοτήτων πρώτου θανάτου (Απάντηση : ( ( ( (ii Να γραφεί το συναρτήσει πιθανοτήτων για αθεστώτα του τύπου (Απάντηση : ( ( ( (iii Να συγριθούν τα αποτελέσατα (i (ii 8 (i Να δειχθεί ότι : (ii Να δειχθεί ότι το είναι ίσο ε αθένα από τα d, ( u u u u u u ( u u u u u u : dud, ddu ( δεν είναι σωστό για το u : ( το ολολήρωα d ; d (iii Γιατί 9 Να βρεθούν τα δ, ( δ( δ A, A, A, A A για ( e (Απάντηση : ( δ( δ δ, δ, Να γενιευθεί η Άσηση 9 να βρεθούν τα δ δ (Απάντηση :,, ( (i Να βρεθεί η τιή του ( δ( δ (ii Να βρεθεί η τιή του ( δ A, A, A ( ( δ A A ε βάση τα αποτελέσατα της Άσησης (Απάντηση : A (Απάντηση : ( δ ( δ ( δ

6 ίδεται νόος De Mivre l, (i Να δειχθεί ότι ( I α ( I α 6α 5 5α A 5 : 4 A 5 : 4 Είναι οι τιές αυτές συνεπείς ε την τιή ( I α ( I α 5 5 5α 5α 6 5 του A 5 : 4 ; (ii Να δειχθεί ότι A 5 : 4 A 5 : 4 Πώς συγρίνονται οι τιές αυτές ε την τιή του ; (iii Να ελεγχθεί η συνέπεια των παραπάνω A 5 : 4 αποτελεσάτων προς τις τιές των A 5 A 4 ίδεται e (i Να γραφεί ο αντίστοιχος νόος Gmer ο αντίστοιχος νόος ( ( e οοιόορφης αρχαιότητας (Απάντηση : e m l e, όπου η διαφορά ανάεσα στις δύο ηλιίες m η διαφορά ανάεσα στην ισοδύναη ηλιία, τη ιρότερη από τις ηλιίες (ii Τι συβαίνει στο m αθώς η διαφορά ηλιιών αυξάνει; ( m ( 4 ίδεται,5, (i Να βρεθούν τα 4 5 (Απάντηση :,89685,959 (ii Να γραφεί ο νόος οοιόορφης αρχαιότητας (Απάντηση : [ (, ] l m l, (iii Να βρεθεί ζωή ( ~ ισοδύναη προς αθένα των (4 : 5, ( : ( : 6 (λαβάνοντας το ~ ως [], όπου η τιή που προύπτει από το νόο οοιόορφης αρχαιότητας (Απάντηση : 54, 6 5 (i Για το νόο Gmer της Άσησης 4, να βρεθεί το (Απάντηση :,86956 : 5 (ii Να βρεθούν τα : 5 : 5 (Απάντηση :,74,498 (iii Ποια είναι η εγγύτερη ηλιία τέτοια ώστε : 5 ; (Απάντηση : 5 η ισότητα είναι "απόλυτη" σε ηλιία 5,454 [ ] 6 (i Για το νόο Makeham,5 (, l (, l αρχαιότητας (Απάντηση : (Απάντηση : 44,8 [ ] 7 Έστω e (i Να δειχθεί ότι, να γραφεί ο νόος οοιόορφης m (ii Να βρεθεί τέτοιο ώστε ( ~ ( : 5 l, ( e e e ( e e A ε επιτόιο ηδέν (Απάντηση : e e e : : : e e δ 8 Να δειχθεί ότι το ολολήρωα e d είναι ίσο ε επίσης ίσο ε αυτά ολοληρώατα; A : (ii Να βρεθεί το A d d Για ποια ασφάλιση είναι ενιαίο ασφάλιστρο αθένα από τα τρία δ 9 Να γραφεί το ολολήρωα e A : d χωρίς το ενιαίο ασφάλιστρο

7 Ποια πιθανότητα παριστάνει το πολλαπλό ολολήρωα ; d d d

ΧΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ

ΧΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ ΧΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ Α. ΑΣΦΑΛΙΣΕΙΣ ΕΠΙ ΠΟΛΛΩΝ ΚΕΦΑΛΩΝ Ορισένες φορές ένα ασφαλιστήριο καλύπτει περισσότερες από ία ζωές. Ένα προφανές παράδειγα είναι η ασφάλιση θανάτου για δύο συζύγους, καθένας

Διαβάστε περισσότερα

ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ

ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Κ Ι ΚΟΥΤΣΟΠΟΥΛΟΣ ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ (ΠΕΡΙΛΗΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΩΝ ΠΑΡΑ ΟΣΕΩΝ ΚΑΙ ΑΣΚΗΣΕΙΣ) ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

Η. ΑΣΚΗΣΕΙΣ ( T) ( 1) ( 2) 3 x =

Η. ΑΣΚΗΣΕΙΣ ( T) ( 1) ( 2) 3 x = Αν είναι "εκ προοιίου φανερό" ότι η παραπάνω διαδικασία είναι συνεπής προς τον υπολογισό της Παραγράφου ΣΤ το προηγούενο παράδειγα επελέγη ε στόχο την επίδειξη αυτής της συνέπειας Η ΑΣΚΗΣΕΙΣ Σε ένα πίνακα

Διαβάστε περισσότερα

V. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α. ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ

V. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α. ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ V ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ Όπως γνωρίζοε, η παρούσα αξία ενός ποσού C πο θα αταβληθεί τη ελλοντιή χρονιή C στιγή είναι ίση ε ( ) i, όπο i το "επιτόιο αποτίησης"

Διαβάστε περισσότερα

A 20 =. (ii) Αν δ = 0,04, P( A 20. =. (Απάντηση : & e, βλέπουµε µια ακόµα φορά κ 0 για εκθετικές συναρτήσεις επιβίωσης. (iii) Να δειχθεί ότι γενικά 1

A 20 =. (ii) Αν δ = 0,04, P( A 20. =. (Απάντηση : & e, βλέπουµε µια ακόµα φορά κ 0 για εκθετικές συναρτήσεις επιβίωσης. (iii) Να δειχθεί ότι γενικά 1 Αν A, 3 αι A, A 5 4 αι A 4, 5, να ειχθεί ότι, να ειχθεί ότι A A, 5 3 7 A Αν,4, A, 5 : 5 A 4 : ίονται 5,445, A,7, α 8,5, 4 αι 3, 375 Να 5 : 5 4 : 4 : A ειχθεί ότι 5, 9 αι 5 5 :, 336 5 : 5 5 5 : 5 ίονται

Διαβάστε περισσότερα

3. Ανάπτυγμα Taylor (για συναρτήσεις δυό μεταβλητών)

3. Ανάπτυγμα Taylor (για συναρτήσεις δυό μεταβλητών) Ανάπτυγμα Taylor (για συναρτήσεις δυό μεταβλητών) Μια «πολύπλοη» συνάρτηση f, δυό μεταβλητών, μπορεί να προσεγγιστεί (στην γειτονιά ενός σημείου (,y)) από μια πολυωνιμιή συνάρτηση με την βοήθεια του αναπτύγματος

Διαβάστε περισσότερα

ικαιώατα αερικανικού τύπου

ικαιώατα αερικανικού τύπου Κεφάλαιο 5 ικαιώατα αερικανικού τύπου 5.1 Εισαγωγή Σε αυτό το κεφάλαιο θα δούε πώς πορούε να τιολογήσουε δικαιώατα αερικανικού τύπου ε βάση το διωνυικό υπόδειγα πολλών περιόδων. Θα δούε επίσης την έννοια

Διαβάστε περισσότερα

1) Μη συνεργατική ισορροπία

1) Μη συνεργατική ισορροπία ΠΑΡΑΡΤΗΜΑ: ΔΙΕΘΕΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΣΥΜΩΝΙΕΣ ΩΣ ΕΝΑ ΠΑΙΓΝΙΟ «ΔΙΛΛΗΜΑΟ ΤΟΥ ΦΥΛΑΚΙΣΜΕΝΟΥ» Υποθέτουε ότι υπάρχουν Ν χώρες, όπου N={,, }, η κάθε ία από τις οποίες παράγει αγαθά και εκπέπει e τόνους διοξειδίου

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 2 (Παράδοση:.) Λύση Ι. Το πεδίο ορισµού Α, θα προκύψει από την απαίτηση ο παρονοµαστής να είναι διάφορος του µηδενός.

ΕΡΓΑΣΙΑ 2 (Παράδοση:.) Λύση Ι. Το πεδίο ορισµού Α, θα προκύψει από την απαίτηση ο παρονοµαστής να είναι διάφορος του µηδενός. ΕΡΓΑΣΙΑ (Παράδοση:.) Σηείωση: Οι ασκήσεις είναι βαθολογικά ισοδύναες Άσκηση Να προσδιορίσετε τα όρια: sin( ) I. lim, II. lim sin, III. lim ( ln ) sin z Όπου χρειαστεί να θεωρήσετε γνωστό ότι lim z z Ι.

Διαβάστε περισσότερα

VIΙΙ. ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΘΕΜΑΤΑ. Α. Η Τ.Μ. L t. Όπως είδαµε, κατά τη σύναψη µιας ασφάλισης, το ετήσιο ασφάλιστρο P ( A x

VIΙΙ. ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΘΕΜΑΤΑ. Α. Η Τ.Μ. L t. Όπως είδαµε, κατά τη σύναψη µιας ασφάλισης, το ετήσιο ασφάλιστρο P ( A x IΙΙ ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΘΕΜΑΤΑ Α Η ΤΜ L Όπως είαµε, ατά τη σύναψη µιας ασφάλισης, το ετήσιο ασφάλιστρο υπολογίζεται T L υ α [Σηµειώνουµε ότι η είναι µηενίζοντας τη µαθηµατιή ελπία της τµ 0 στην πραγµατιότητα

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο) Απαντήσεις στην 2 η Σειρά ασκήσεων

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο) Απαντήσεις στην 2 η Σειρά ασκήσεων ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 8-9 Ηιαγωγοί και Ηιαγώγιες οές (7 ο Εξάηνο) Απαντήσεις στην η Σειρά ασκήσεων 1. α) Αν υποθέσουε ότι δύο ηιαγώγια υλικά, όπως τα S και G, έχουν περίπου ίδιες

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΤΑΝΥΣΤΩΝ. 1. Εισαγωγικά. Υποθέτουµε ότι ο αναγνώστης γνωρίζει τα περιεχόµενα στην ενότητα Γραµµικές Μορφές.

ΑΛΓΕΒΡΑ ΤΑΝΥΣΤΩΝ. 1. Εισαγωγικά. Υποθέτουµε ότι ο αναγνώστης γνωρίζει τα περιεχόµενα στην ενότητα Γραµµικές Μορφές. ΑΛΓΕΒΡΑ ΤΑΝΥΣΤΩΝ Εισαγωγιά Υποθέτουε ότι ο ααγώστης γωρίζει τα περιεχόεα στη εότητα Γραιές Μορφές Γειές υποθέσεις Συβοισοί Ο χώρος, στοιχεία του οποίου χρησιοποιούε, είαι έας γραιός (αυσατιός) χώρος V

Διαβάστε περισσότερα

Εισαγωγή. 1. Παράµετρος, εκτιµητής, εκτίµηση

Εισαγωγή. 1. Παράµετρος, εκτιµητής, εκτίµηση Εκτίηση Σηείου Εκτίηση Σηείου Εισαγωγή Σε πολλές περιπτώσεις στη στατιστική έχουε συναντήσει προβλήατα για τα οποία απαιτείται να εκτιηθεί ια παράετρος. Η έθοδος που ακολουθεί στις περιπτώσεις αυτές κανείς

Διαβάστε περισσότερα

Η. ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ A ΚΑΙ Α. Στην Άσκηση IV.ΣΤ.14 δείξαµε ότι, κάτω από την υπόθεση οµοιόµορφης κατανοµής των

Η. ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ A ΚΑΙ Α. Στην Άσκηση IV.ΣΤ.14 δείξαµε ότι, κάτω από την υπόθεση οµοιόµορφης κατανοµής των Η ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΚΑΙ Α Στην Άσηση IVΣΤ4 είξε ότι, άτω πό την πόθεση οοιόορφης τνοής των + θνάτων σε άθε έτος ηλιίς (UDD, + q Η ισότητ τή είχνει ότι, άτω πό την πόθεση UDD, τ ενιί σφάλιστρ ι ινοποιούν τη

Διαβάστε περισσότερα

3. Χαρακτηριστικές Παράμετροι Κατανομών

3. Χαρακτηριστικές Παράμετροι Κατανομών . αρακτηριστικές Παράετροι Κατανοών - Αναενόενη ή έση τιή ιας διακριτής τυχαίας εταβητής. Στο προηγούενο κεφάαιο είδαε ότι σε κάθε τ.. αντιστοιχεί ία κατανοή. Αν και η συνάρτηση κατανοής F ή ισοδύναα η

Διαβάστε περισσότερα

Κεφάλαιο 9: Ελεύθερα Ηλεκτρόνια σε Μαγνητικό Πεδίο. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών

Κεφάλαιο 9: Ελεύθερα Ηλεκτρόνια σε Μαγνητικό Πεδίο. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Σχολή Εφαροσένων Μαθηατικών και Φυσικών Επιστηών Εθνικό Μετσόβιο Πολυτεχνείο Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Κεφάλαιο 9: Ελεύθερα Ηλεκτρόνια σε Μαγνητικό Πεδίο Λιαροκάπης Ευθύιος Άδεια

Διαβάστε περισσότερα

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = =

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = = Παράδειγα Το γωστό παράδειγα ε τα βάρη 0 ατόω ταξιοηέα σε 5 οάδες. Η έση τιή για το δείγα έχει βρεθεί 77. Τάξη Απόλυτες συχότητες Κετρική τιή τάξης Απόκλιση από το έσο 65-69 67,5 9,5 70-7 6 7,5,5 75-79

Διαβάστε περισσότερα

Ενότητα 7: Ανάλυση ιασποράς µε έναν παράγοντα (One way Analysis of Variance)

Ενότητα 7: Ανάλυση ιασποράς µε έναν παράγοντα (One way Analysis of Variance) Ενότητα 7: Ανάλυση ιασποράς ε έναν παράγοντα Oe wy yss of Vrce Σε αυτή την ενότητα θα εξετάσουε ένα ειδικό πρόβληα γραικής παλινδρόησης το ο- ποίο εφανίζεται αρκετά συχνά στις εφαρογές. Συγκεκριένα θέλουε

Διαβάστε περισσότερα

Κεφάλαιο 6: Διαμαγνητισμός και Παραμαγνητισμός. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών

Κεφάλαιο 6: Διαμαγνητισμός και Παραμαγνητισμός. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Σχολή Εφαροσένων Μαθηατικών και Φυσικών Επιστηών Εθνικό Μετσόβιο Πολυτεχνείο ιηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Κεφάλαιο 6: ιααγνητισός και Παρααγνητισός Λιαροκάπης Ευθύιος Άδεια Χρήσης

Διαβάστε περισσότερα

ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΚΕΦ. 2 ΑΛΥΣΙ ΕΣ MARKOV

ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΚΕΦ. 2 ΑΛΥΣΙ ΕΣ MARKOV ΕΙ ΙΚΑ ΘΕΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΚΕΦ ΑΛΥΣΙ ΕΣ MARKOV Πίνακας Περιεχοένων Γενικά3 Εργοδικότητα 3 Πιθανότητες πρώτης ετάβασης Αναενόενος χρόνος8 4 Κλάσεις Ισοδυναίας Κατάταξη Καταστάσεων6 5 Γενική δοή

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΜΕΣΕΣ ΤΙΜΕΣ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΜΕΣΕΣ ΤΙΜΕΣ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ ΚΕΦΑΛΑΙΟ 18 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΜΕΣΕΣ ΤΙΜΕΣ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Στο κεφάλαιο αυτό θα ας απασχολήσουν έλεγχοι στατιστικών υποθέσεων που αναφέρονται στις έσες τιές και αναλογίες πληθυσών

Διαβάστε περισσότερα

ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ. x Ο πρώτος νόµος θνησιµότητας οφείλεται στον De Moivre, είναι γραµµικός, s(x)

ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ. x Ο πρώτος νόµος θνησιµότητας οφείλεται στον De Moivre, είναι γραµµικός, s(x) ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ Ο πρώτος νόµος θνησιµότητας οφείλεται στον D Moivr, είναι γραµµικός, s(), ω ω, ή ισοδύναµα κ( ω ), ω και κ θετική σταθερά, και φυσικά δεν έχει καµιά εφαρµογή

Διαβάστε περισσότερα

Μέτρα martingale. Κεφάλαιο Εισαγωγή. 4.2 εσευένη έση τιή

Μέτρα martingale. Κεφάλαιο Εισαγωγή. 4.2 εσευένη έση τιή Κεφάλαιο 4 Μέτρα martingale 4.1 Εισαγωγή Είδαε στο Κεφάλαιο 2 ότι σε αγορές ιας περιόδου, αν ένα παράγωγο πορεί να αναπαραχθεί, τότε πορούε να το τιολογήσουε σύφωνα ε την αρχή της η επιτηδειότητας και

Διαβάστε περισσότερα

Κεφάλαιο 3. Ιδιότητες μονάδων - συστήματος που βασίζονται σε διάφορους τύπους γήρανσης

Κεφάλαιο 3. Ιδιότητες μονάδων - συστήματος που βασίζονται σε διάφορους τύπους γήρανσης Κεφάλαιο Ιδιότητες ονάδων - συστήατος που βασίζονται σε διάφορους τύπους γήρανσης Έχουε ήδη αναφερθεί στην έννοια της «γήρανσης» ιας ονάδας ή ενός συστήατος κατά την ελέτη IF / DF χρόνων ζωής Συγκεκριένα

Διαβάστε περισσότερα

Το οντέλο Black & Scholes ως όριο διωνυικών υποδειγάτων

Το οντέλο Black & Scholes ως όριο διωνυικών υποδειγάτων Κεφάλαιο 6 Το οντέλο Blac & Scoles ως όριο διωνυικών υποδειγάτων 61 Εισαγωγή Σ αυτό το κεφάλαιο θα θεωρήσουε διωνυικά υποδείγατα για τη δυναική του πρωτογενούς προϊόντος στο διάστηα [0,T], όπου το πλήθος

Διαβάστε περισσότερα

Υποδείγατα αγορών ιας περιόδου

Υποδείγατα αγορών ιας περιόδου Κεφάλαιο 2 Υποδείγατα αγορών ιας περιόδου 2.1 Εισαγωγή Θα αρχίσουε τώρα να κάνουε υποθέσεις για τη δυναική των πρωτογενών προϊόντων και θα ερευνήσουε αν ε αυτές τις επιπλέον υποθέσεις πορούε να εξαγάγουε

Διαβάστε περισσότερα

Ι ΑΣΚΟΝΤΑΣ ΤΙΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕ ΤΟ CABRI 3D

Ι ΑΣΚΟΝΤΑΣ ΤΙΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕ ΤΟ CABRI 3D Ι ΑΣΚΟΝΤΑΣ ΤΙΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕ ΤΟ CABRI 3D Νίος Α. Φωτιάδης ρ. Μαθηµατιών Επιµορφωτής Β επιπέδου λάδου ΠΕ 03 E-mail: nikos.fotiades@gmail.com Website: http://users.sch.gr/nfotiades/ Περίληψη Οι µαθητές

Διαβάστε περισσότερα

ΦΥΣΙΚΗ και αν συνεχίζει να αυξάνεται η συχνότητα του διεγέρτη, το πλάτος της εξαναγκασµένης ταλάντωσης διαρκώς θα µειώνεται.

ΦΥΣΙΚΗ και αν συνεχίζει να αυξάνεται η συχνότητα του διεγέρτη, το πλάτος της εξαναγκασµένης ταλάντωσης διαρκώς θα µειώνεται. ΦΥΣΙΚΗ - ΘΕΜΑ ο : Α Να επιλέξετε σε άθε ερώτηα την σωστή πρόταση Σε ένα στάσιο ύα που έχει δηιουργηθεί σε ια ελαστιή χορδή, η διαφορά φάσης εταξύ δύο ορίων του που απέχουν εταξύ τους απόσταση χ: χ Α) δίνεται

Διαβάστε περισσότερα

Μάθηµα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις

Μάθηµα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις Μάθηα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ 7 ου εξαήνου ΣΕΜΦΕ ΘΕΩΡΙΑ ΑΝΑΜΟΝΗΣ - ΑΝΑΛΥΣΗ ΕΠΙ ΟΣΗΣ ΙΚΤΥΩΝ Ασκήσεις Αποστέλλονται πακέτα σταθεού ήκους ytes από τον κόβο # στον κόβο #4 έσω των κόβων # και #3 σε σειά, όπως

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΕ ΕΡΩΤΗΣΕΙΣ -ΑΠΑΝΤΗΣΕΙΣ Tι ονομάζουμε συνάρτηση ; Tι ονομάζουμε πραγματιή συνάρτηση πραγματιής μεταβλητής; Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β είναι

Διαβάστε περισσότερα

Ασαφής Λογική και Αναγνώριση Προτύπων

Ασαφής Λογική και Αναγνώριση Προτύπων Ασαφής Λογική και Αναγνώριση Προτύπων Ορισός Έστω Χ ένα τυπικό σύνολο αντικειένων, που το καλούε σύπαν, του οποίου τα στοιχεία τα συβολίζουε ε. Η σχέση του περιέχεσθε για ένα τοπικό υποσύνολο του Α του

Διαβάστε περισσότερα

λ n-1 λ n Σχήµα 1 - Γράφος µεταβάσεων διαδικασίας γεννήσεων- θανάτων

λ n-1 λ n Σχήµα 1 - Γράφος µεταβάσεων διαδικασίας γεννήσεων- θανάτων Κεφάαιο 4. Απά οντέα συστηάτων αναονής Στο κεφάαιο αυτό παρουσιάζουε απά οντέα αναονής (συστήατα ε ένα σταθό εξυπηρέτησης) ενώ τα οντέα δικτύων αναονής θα εξεταστούν σε επόενο κεφάαιο. 4. Μοντέα αναονής

Διαβάστε περισσότερα

Εκτίµηση άγνωστων κατανοµών πιθανότητας

Εκτίµηση άγνωστων κατανοµών πιθανότητας KE 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Εκτίηση άγνωστων κατανοών πιθανότητας ΤήαΕπιστήης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήιο Πελοποννήσου 7 coas Tsaatsous Εισαγωγή Παραετρικές έθοδοι Μη παραετρικές

Διαβάστε περισσότερα

Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας

Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας Ο δεύτερος νόος του Νεύτωνα για σύστηα εταβλητής άζας Όταν εξετάζουε ένα υλικό σύστηα εταβλητής άζας, δηλαδή ένα σύστη α που ανταλλάσσει άζα ε το περιβάλλον του, τότε πρέπει να είαστε πολύ προσεκτικοί

Διαβάστε περισσότερα

ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ SET02: ΜΕΓΕΘΟΣ ΑΓΟΡΑΣ

ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ SET02: ΜΕΓΕΘΟΣ ΑΓΟΡΑΣ ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ ΟΡΙΣΜΟΣ - ΣΚΟΠΙΜΟΤΗΤΑ Ο δείκτης προσδιορίζει το ύψος του Ακαθάριστου Εγχώριου Προϊόντος (ΑΕΠ) ανά Περιφέρεια και Νοό και εκφράζει το έγεθος της αγοράς, η οποία δυνητικά ενοποιείται

Διαβάστε περισσότερα

οποίο ανήκει και π ο γνωστός αριθµός.

οποίο ανήκει και π ο γνωστός αριθµός. 1 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙ Μήκος τόξου : Το ήκος ενός τόξου ο δίνεται από τον τύπο = πρ όπου ρ η ακτίνα του κύκλου στον οποίο ανήκει και π ο γνωστός αριθός.. Το ακτίνιο (rad): Ονοάζουε τόξο ενός ακτινίου (rad)

Διαβάστε περισσότερα

Κεφάλαιο 4. Θεωρήµατα οµής

Κεφάλαιο 4. Θεωρήµατα οµής Κεφάαιο 4 Θεωρήαα οής Σ' αυό ο εφάαιο θ αποδείξουε α Θεωρήαα οής για πεπερασένα παραγόενα R-πρόυπα, όπου R αέραια περιοχή υρίων ιδεωδών, (απι) 4 Ανάυση σε άθροισα περιοδιού αι εεύθερου, ανάυση σοιχείο

Διαβάστε περισσότερα

xdx και κ xdx x. Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 1 9 8 3 8 9 ) 1 Να αποδειχθει οτι : α) Η συναρτηση f με f(x)= x ειναι γνησιως αυξουσα.

xdx και κ xdx x. Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 1 9 8 3 8 9 ) 1 Να αποδειχθει οτι : α) Η συναρτηση f με f(x)= x ειναι γνησιως αυξουσα. Π α ν ε λ λ α δ ι ε ς Ε ξ ε τ α σ ε ι ς ( 9 8 3 8 9 ) Να αποδειχθει οτι : Η συναρτηση f με f() ειναι γνησιως αυξουσα. Για ισχυουν : d αι d. Η f εχει πεδιο ορισμου το Α[, ) αι ειναι συνεχης σε αυτο. Αομη

Διαβάστε περισσότερα

1. Αν 1. x (Β) (Α) (Γ) (Ε) 2 (Δ)

1. Αν 1. x (Β) (Α) (Γ) (Ε) 2 (Δ) . Αν 4 x, 4 4 d d (Α) x x (Β) x x (Γ) x x x (Δ) x (Ε) x x . Δάνειο ύψους εξοφλείται με τρεις ληξιπρόθεσμες δόσεις, α αι α. Το ποσό τόου σε άθε δόση είναι σταθερό αι ίσο με β. Να βρεθούν τα α αι β αι το

Διαβάστε περισσότερα

2. Ποιά από τις παρακάτω γραφικές παραστάσεις αντιστοιχεί στο νόµο του Ohm; (α) (β) (γ) (δ)

2. Ποιά από τις παρακάτω γραφικές παραστάσεις αντιστοιχεί στο νόµο του Ohm; (α) (β) (γ) (δ) ΘΕΜΑ ο Στις ερωτήσεις - 4 να γράψετε στο τετράδιό σας τον αριθό της ερώτησης και δίπλα το γράα που αντιστοιχεί στη σωστή απάντηση.. Πυκνωτής χωρητικότητας είναι φορτισένος ε φορτίο Q και η τάση στους οπλισούς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΑΣΑΦHΣ ΛΟΓΙΚΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΤΙΚΟΣ ΣΥΛΛΟΓΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 6 ΑΣΑΦHΣ ΛΟΓΙΚΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΤΙΚΟΣ ΣΥΛΛΟΓΙΣΜΟΣ ΚΕΦΑΛΑΙΟ 6 ΑΣΑΦHΣ ΛΟΓΙΚΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΤΙΚΟΣ ΣΥΛΛΟΓΙΣΜΟΣ 6. ΑΠΟ ΤΗΝ ΚΛΑΣΙΚΗ ΣΤΗΝ ΑΣΑΦΗ ΛΟΓΙΚΗ Η θεωρία της λογικής (Logc theory) ελετά τις εθόδους και τις αρχές του συλλογισού (Reasog), δηλαδή, ε ποιο τρόπο

Διαβάστε περισσότερα

Στην Στατιστική Φυσική και στην Θερµοδυναµική αποδεικνύεται ότι δύο συστήµατα που δεν είναι θερµικά µονωµένα, σε ισορροπία έχουν την ίδια

Στην Στατιστική Φυσική και στην Θερµοδυναµική αποδεικνύεται ότι δύο συστήµατα που δεν είναι θερµικά µονωµένα, σε ισορροπία έχουν την ίδια ΦΥΣ 347: Υπολογιστική Φυσική Eβδοάδα 3 3. Μέθοδος etropols onte Carlo. Oι έθοδοι τύπου etropols onte Carlo εφαρόζονται για την ελέτη κλασσικών και κβαντικών συστηάτων (ε Ν>> βαθούς ελευθερίας σε ισορροπία.

Διαβάστε περισσότερα

Τεχνολογικό Πανεπιστήµιο Κύπρου

Τεχνολογικό Πανεπιστήµιο Κύπρου Τεχνολογιό Πανεπιστήµιο Κύπρου Σχολή Μηχανιής αι Τεχνολογίας Τμήμα Πολιτιών Μηχανιών αι Μηχανιών Γεωπληροφοριής ΦΥΣΙΚΗ (ΠΟΜ 114) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Διδάσων/ Συντονιστής μαθήματος Εξάμηνο Δρ Ευάγγελος Αύλας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Οδηγός Επιβίωσης 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ : Διαφοριός Λογισμός ΚΕΦΑΛΑΙΟ : Στατιστιή Οδηγός Επιβίωσης Περιλαμβάνει: Ερωτήσεις Θεωρίας Όλες τις Αποδείξεις Χρήσιμο Τυπολόγιο ΑΜΕΡΙΚΑΝΙΚΗ

Διαβάστε περισσότερα

ÏÅÖÅ [ ) ) ) ) Οπότε το σηµείο τοµής της γραφικής παράστασης µε τον x x είναι το Μ(-2,0).

ÏÅÖÅ [ ) ) ) ) Οπότε το σηµείο τοµής της γραφικής παράστασης µε τον x x είναι το Μ(-2,0). Θέµα ο Α.. Θεωρία από Σχ. Βιβλίο σελ. 9 Α.. Θεωρία από Σχ. Βιβλίο σελ. 9 Α.3. Απόδειξη από Σχ. Βιβλίο σελ. 8-9 Β. α Λάθος β Σωστό γ Σωστό δ Λάθος ε Λάθος Θέµα ο α) Πρέπει + 0 x αι x + 0 x αι έστω x + 0

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 4 o Γενιό Λύειο Χανίων Γ τάξη Μαθηματιά Γενιής Παιδείας γ Ασήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράης http://users.sch.gr/mipapagr 4 ο Γενιό Λύειο Χανίων 00 0 ΣΥΝΔΙΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗ

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης

Διαβάστε περισσότερα

Q U A N T U M E L E C T R O D Y N A M I C S

Q U A N T U M E L E C T R O D Y N A M I C S Q U A N T U M E L E C T R O D Y N A M I C S ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Στα πλαίσια του Μεταπτυχιακού προγράατος σπουδών. ΙΩΑΝΝΗΣ Ε. ΣΦΑΕΛΟΣ 3 ΠΕΡΙΕΧΟΜΕΝΑ. Κανόνες Feynman. Ελαστική σκέδαση ηλεκτρονίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΣΙ ΗΡΟΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ ΜΑΓΝΗΤΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΚΕΦΑΛΑΙΟ 8 ΣΙ ΗΡΟΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ ΜΑΓΝΗΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΕΑΛΑΙΟ 8 ΚΕΑΛΑΙΟ 8 ΣΙ ΗΡΟΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ ΜΑΓΝΗΤΙΚΑ ΚΥΚΛΩΜΑΤΑ 8. Μαγνήτες, πόλοι, αγνήτιση Στην κλασική ιστορική θεώρηση των αγνητικών φαινοένων ία αγνητισένη ράβδος χαρακτηρίζεται από δύο πόλους, ένα

Διαβάστε περισσότερα

Το διωνυικό υπόδειγα πολλών περιόδων

Το διωνυικό υπόδειγα πολλών περιόδων Κεφάλαιο Το διωνυικό υπόδειγα πολλών περιόδων.1 Εισαγωγή Στο κεφάλαιο αυτό θα παρουσιάσουε ένα διακριτό αλλά περισσότερο ρεαλιστικό υπόδειγα αγοράς, το διωνυικό υπόδειγα πολλών περιόδων. Θα διαερίσουε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ Χαρακτηριστικά - Ιδιότητες W Πρότυπο Weinberg Salam: Σχέση m z m Σχέση m, m t, m H Μέτρηση m Επιταχυντές pp (pp bar Επιταχυντές e - e + ba

ΠΕΡΙΕΧΟΜΕΝΑ Χαρακτηριστικά - Ιδιότητες W Πρότυπο Weinberg Salam: Σχέση m z m Σχέση m, m t, m H Μέτρηση m Επιταχυντές pp (pp bar Επιταχυντές e - e + ba W mass Μπαλωενάκης Στέλιος ΑΕΜ 1417 W mass 1 ΠΕΡΙΕΧΟΜΕΝΑ Χαρακτηριστικά - Ιδιότητες W Πρότυπο Weinberg Salam: Σχέση m z m Σχέση m, m t, m H Μέτρηση m Επιταχυντές pp (pp bar Επιταχυντές e - e + bar ) W

Διαβάστε περισσότερα

35 = (7+ 109) =

35 = (7+ 109) = Άλγεβρα Α Λυείου Στεφανής Παναγιώτης Συνδυαστιές Ασήσεις Ασήσεις δηµοσιευµένες στο περιοδιό τεύχος 8 Άσηση α) Να δείξετε ότι: 7 + + + +... + 9 = β) Να λυθεί η ανίσωση: 7 7x + x + x +... +

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ. Αναπλ. Καθηγητής Μιχαήλ Γεωργιάδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ. Αναπλ. Καθηγητής Μιχαήλ Γεωργιάδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ 6 ου ΕΞΑΜΗΝΟΥ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ Αναπλ. Καθηγητής Μιχαήλ Γεωργιάδης Απρίλιος 8 ΜΕΡΟΣ Ι ΒΑΣΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις Θεµάτων Εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34

Ενδεικτικές Λύσεις Θεµάτων Εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34 Σύγχρονη ΦΥΕ4 4/7/ Ελληνικό Ανοικτό Πανεπιστήιο Ενδεικτικές Λύσεις Θεάτων Εξετάσεων στη Θεατική Ενότητα ΦΥΕ4 ΣΥΓΧΡΟΝΗ ιάρκεια: 8 λεπτά Ονοατεπώνυο: Τήα: Θέα ο (Μονάδες:.5) Από τη συνέχεια της κυατοσυνάρτησης

Διαβάστε περισσότερα

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ ΣΧΟΛΙΑ ΜΕΘΟ ΟΙ

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ ΣΧΟΛΙΑ ΜΕΘΟ ΟΙ .1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ 1. Αρχή της Μαθηµατιής Επαγωγής Έστω ισχυρισµός Ρ(ν), όπου ν θετιός αέραιος. Αν i) Ρ αληθής αι ii) Ρ(ν) Ρ(ν + 1) για άθε ν, τότε Ρ(ν) αληθής για άθε ν.. Ανισότητα Bernoulli

Διαβάστε περισσότερα

Για τις προτάσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή επιλογή.

Για τις προτάσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή επιλογή. ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Σεπτέβριος 016 ΘΕΜΑ A Για τις προτάσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθό της πρότασης και, δίπλα, το γράα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας . Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 0 ΙΟΥΝΙΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

= = = = N N. Σηµείωση:

= = = = N N. Σηµείωση: Ανάλογα ε τα φορτία που αναπτύσσονται σε ια διατοή ακολουθείται διαφορετική διαδικασία διαστασιολόγησης. 1 Φορτία ιατοής Καθαρή Κάψη Ροπή M σε ια διεύθυνση Προέχουσα Κάψη+Θλίψη Ροπή M σε ια διεύθυνση ε

Διαβάστε περισσότερα

Εργασία στα πλαίσια του µαθήµατος των στοιχειωδών σωµατιδίων

Εργασία στα πλαίσια του µαθήµατος των στοιχειωδών σωµατιδίων Μη Αβελιανές Θεωρίες Βαθίδας Μηχανισός Hggs Η G.W.S θεωρία για τις ηλεκτρασθενείς αλληλεπιδράσεις Εργασία στα πλαίσια του αθήατος των στοιχειωδών σωατιδίων Επιβλέπων καθηγήτρια: Στασινάκη Παρασκευόπουλος

Διαβάστε περισσότερα

(9.1) (9.2) B E = t (9.3) (9.4) (9.5) J = t

(9.1) (9.2) B E = t (9.3) (9.4) (9.5) J = t ΣΗΜΕΙΩΣΕΙΣ Λ. Περιβολαροπουλος ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWELL Σκοπός Το κεφάλαιο αυτό έχει τέσσερις βασικούς στόχους. Πρώτον, τη ελέτη των εξισώσεων του Maxwell στην τελική τους ορφή, όπου περιλαβάνεται και

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ΣΧΟΛΗ Ν. ΟΚΙΜΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ & Η/Υ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ρ. Α. ΜΑΓΟΥΛΑΣ Επικ. Καθηγητης Σ.Ν.. 13 I ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗΝ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 Συστήατα συντεταγένων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΑ ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ Τήα Επιστήης και Τεχνολογίας Υλικών Πανεπιστήιο Κρήτης Γιώργος Κιοσέογλου ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ 4. ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ ΤΟΥ ΠΑΡΑΜΑΓΝΗΤΙΣΜΟΥ Τα κύρια συπεράσατα της κλασσικής θεωρίας τροποποιούνται

Διαβάστε περισσότερα

Ασαφής Λογική & Έλεγχος

Ασαφής Λογική & Έλεγχος Τεχνητή Νοηοσύνη 7 σαφής Λογική & Έλεγχος Φώτης Κόκκορας ΤΕΙ Θεσσαλίας Τήα Μηχανικών Πληροφορικής (Fuzzy Logic Fuzzy Control) Η σαφής Λογική (Fuzzy Logic)......δεν είναι καθόλου...ασαφής ή ανακριβής, όπως

Διαβάστε περισσότερα

Θέματα. Α1. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (9 μονάδες)

Θέματα. Α1. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (9 μονάδες) Θέματα Θέμα Α Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α αι Β ενός δειγματιού χώρου Ω, ισχύει P(A-B)P(A)-P( A B) (9 μονάδες) Α. Να διατυπώσετε το νόμο των μεγάλων αριθμών. (6 μονάδες) Α. Να χαρατηρίσετε

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 21 ΙΟΥΛΙΟΥ 2017

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 21 ΙΟΥΛΙΟΥ 2017 Όνομα: Επίθετο: Ημερομηνία: Πρωί: X Απόγευμα: Θεματική ενότητα: 1) Να υπολογιστεί το A 11 θανάτων (UDD)". (2) 2 :1 χρησιμοποιώντας την υπόθεση της "ομοιόμορφης κατανομής των Δίνεται i=2%, q 0 = 0,2 και

Διαβάστε περισσότερα

Φωτογραµµετρική Οπισθοτοµία

Φωτογραµµετρική Οπισθοτοµία Φτογραµµετριή Οπισθοτοµία είναι εείνη η διαδιασία µε την οποία προσδιορίζονται τα στοιχεία του εξτεριού προσανατολισµού µιας λήψης (Χο, Υο, Ζο,, αι µε τη βοήθεια τν εξισώσεν της Συνθήης Συγγραµµιότητας

Διαβάστε περισσότερα

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ 2

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ 2 ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΝΤΑΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΠΑΡΑΔΟΣΕΙΣ ΔΕΚΕΜΒΡΙΟΣ 006 ΕΙΣΑΓΩΓΗ.... ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΥΗΜΕΡΙΑΣ... 3. Τα θεελιώδη θεωρήατα της

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. (iii) ln(0.5) = , (iv) e =

ΑΣΚΗΣΕΙΣ. (iii) ln(0.5) = , (iv) e = ΑΣΚΗΣΕΙΣ Να συµπληρωθεί ο παρακάτω πίνακας 47 48 49 50 5 l 348480 299692 d 43306 q 0.0 0.2 0.5 2 3 4 5 Η ένταση θνησιµότητας µ +t, 0 t, αλλάζει σε µ +t - c, όπου το c είναι θετικός σταθερός αριθµός. Να

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

Πληθυσμός μιας έρευνας λέγεται το σύνολο των αντικειμένων που εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά.

Πληθυσμός μιας έρευνας λέγεται το σύνολο των αντικειμένων που εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά. ΣΤΑΤΙΣΤΙΚΗ Στατιστιή λέγεται ο λάδος τω Μαθηματιώ ο οποίος συγετρώει στοιχεία που ααφέροται σε έα σύολο ατιειμέω, τα ταξιομεί, αι τα παρουσιάζει σε ατάλληλη μορφή ώστε α μπορού α ααλυθού αι α ερμηευθού.

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα

Διαβάστε περισσότερα

υναική του Συστήατος Lorenz

υναική του Συστήατος Lorenz ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΝ Πρόγραα Μεταπτυχιακών Σπουδών Μαθηατική Μοντελοποίηση Στις Φυσικές Επιστήες και τις Σύγχρονες Τεχνολογίες Μεταπτυχιακή Εργασία υναική του Συστήατος Lorenz ΚΟΛΑΖΑ ΕΥΓΕΝΙΑ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 1 ης ΕΡΓΑΣΙΑΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 1 ης ΕΡΓΑΣΙΑΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 34 7-8 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ης ΕΡΓΑΣΙΑΣ Προθεσία παράδοσης 6//7 Άσκηση Α) Οι δυνάεις που δρουν σε κάθε άζα φαίνονται στο Σχήα. Αναλύοντας σε ορθογώνιο σύστηα αξόνων (διακεκοένες

Διαβάστε περισσότερα

2.2 ιαίρεση Πολυωνύμων

2.2 ιαίρεση Πολυωνύμων ιαίρεση Πολυωνύμων 1 Να γίνουν οι διαιρέσεις: α) (x 5 - x + x - 9) : (x - 1) β) (x 4-7x + x - 15) : (x + 5) γ) (x - 4αx + α ) : (x - α) δ) [7x - (9α + 7α ) x + 9α ] : (x - α) Με τη βοήθεια του σχήματος

Διαβάστε περισσότερα

Martingales. Κεφάλαιο Εισαγωγή. 4.2 εσευένη έση τιή

Martingales. Κεφάλαιο Εισαγωγή. 4.2 εσευένη έση τιή Κεφάλαιο 4 Martingales 4.1 Εισαγωγή Στο κεφάλαιο αυτό θα εισαγάγουε την έννοια της δεσευένης έσης τιής για διακριτές τυχαίες εταβλητές και θα δούε πότε χαρακτηρίζουε ια στοχαστική διαδικασία διακριτού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΜΑΓΝΗΤΟΣΤΑΤΙΚΟ ΠΕ ΙΟ

ΚΕΦΑΛΑΙΟ 6 ΜΑΓΝΗΤΟΣΤΑΤΙΚΟ ΠΕ ΙΟ ΚΕΦΑΛΑΙΟ 6 ΚΕΦΑΛΑΙΟ 6 ΜΑΓΝΗΤΟΣΤΑΤΙΚΟ ΠΕ ΙΟ 6. Εισαγωγικά Το αγνητοστατικό πεδίο παράγεται από σταθερά (όνια) ρεύατα ή όνιους αγνήτες, χαρακτηριστικό του δε διάνυσα είναι η αγνητική επαγωγή ή πυκνότητα

Διαβάστε περισσότερα

ΟΙΚΟΓΕΝΕΙΕΣ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΑΝΙΣΟΤΗΤΩΝ

ΟΙΚΟΓΕΝΕΙΕΣ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΑΝΙΣΟΤΗΤΩΝ ΑΝΑΣΤΑΣΙΟΣ Ν ΖΑΧΟΣ ΟΙΚΟΓΕΝΕΙΕΣ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΑΝΙΣΟΤΗΤΩΝ Διπλωατική Εργασία Επιβλέπων: Kαθηγητής κ Αθανάσιος Κοτσιώλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΤΡΑ 005 Οικογένειες Συναρτησιακών Ανισοτήτων

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίνος Ιωάννου, Στέφανος Γεροντόπουλος, Σταυρούλα Γκιτάκου

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίνος Ιωάννου, Στέφανος Γεροντόπουλος, Σταυρούλα Γκιτάκου ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 19/03/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίος Ιωάου, Στέφαος Γεροτόπουλος, Σταυρούλα Γκιτάκου ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α5 α γράψετε στο

Διαβάστε περισσότερα

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος, . ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -

Διαβάστε περισσότερα

Θεωρία Γράφων - Εισαγωγή

Θεωρία Γράφων - Εισαγωγή Θεωρία Γράφων - Εισαγωγή Τοπολογιές απειονίσεις Τοπολογία Κλάδος των μαθηματιών που μελετά ανάμεσα σε άλλα τις ιδιότητες εείνες των γεωμετριών σχημάτων οι οποίες παραμένουν αναλλοίωτες ατά τις τοπολογιές

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε

Διαβάστε περισσότερα

Διαγώνισμα στην κυκλική κίνηση.

Διαγώνισμα στην κυκλική κίνηση. Διαγώνισμα στην λιή ίνηση. Θέμα. (ια τις ερωτήσεις. έως αι.4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης αι δίπλα το γράμμα πο αντιστοιχεί στη σωστή πρόταση.).) Στην ομαλή λιή ίνηση ενός ινητού

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 5 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος-Ειδικότητες: ΠΕ 15 ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ, ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ, ΦΥΣΙΚΩΝ ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΩΝ

Διαβάστε περισσότερα

Στις ερωτήσεις Α.1. και Α.2. να γράψετε στο τετράδιό σας το γράµµα της σωστής απάντησης.

Στις ερωτήσεις Α.1. και Α.2. να γράψετε στο τετράδιό σας το γράµµα της σωστής απάντησης. ΘΕΜΑ ο Στις ερωτήσεις Α.. αι Α.. να γράψετε στο τετράδιό σας το γράµµα της σωστής απάντησης. Α.. Α.. Για να πραγµατοποιηθεί η σύνδεση σε αστέρα τριφασιού µη συµµετριού φορτίου χρειάζονται: α. τρεις αγωγοί

Διαβάστε περισσότερα

1. Μαγνητικό Πεδίο Κινούμενου Φορτίου. Το μαγνητικό πεδίο Β σημειακού φορτίου q που κινείται με ταχύτητα v είναι:

1. Μαγνητικό Πεδίο Κινούμενου Φορτίου. Το μαγνητικό πεδίο Β σημειακού φορτίου q που κινείται με ταχύτητα v είναι: 1. Μαγνητικό Πεδίο Κινούενου Φορτίου Το αγνητικό εδίο Β σηειακού φορτίου q ου κινείται ε ταχύτητα v είναι: qv u 4 qvsinφ 4 Το Β είναι ανάλογο του q και του 1/ όως και το Ε. Το Β δεν είναι ακτινικό, είναι

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Άσκηση 1102 Δίνονται δύο ενδεχόμενα ενός δειγματικού χώρου Ω και οι πιθανότητες α) Να υπολογίσετε την (Μονάδες 9) β) i) Να υπολογίσετε με διάγραμμα Venn και να γράψετε στη γλώσσα των συνόλων το ενδεχόμενο:

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ Άσκηση. Έστω f συνεχής στο διάστημα I και έστω ότι ισχύει f() για κάθε I. Αν η f 2 είναι παραγωγίσιμη στο I, αποδείξτε ότι η f είναι παραγωγίσιμη στο

Διαβάστε περισσότερα

ΧΙΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ ΙΙ Α. ΓΕΝΙΚΕΥΜΕΝΕΣ ΑΠΟ ΚΟΙΝΟΥ ΠΙΘΑΝΟΤΗΤΕΣ. Στα όσα προηγήθηκαν, εξετάσαµε δύο "ακραία" καθεστώτα x1x

ΧΙΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ ΙΙ Α. ΓΕΝΙΚΕΥΜΕΝΕΣ ΑΠΟ ΚΟΙΝΟΥ ΠΙΘΑΝΟΤΗΤΕΣ. Στα όσα προηγήθηκαν, εξετάσαµε δύο ακραία καθεστώτα x1x ΧΙΙΙ ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ ΙΙ Α ΓΕΝΙΚΕΥΜΕΝΕΣ ΑΠΟ ΚΟΙΝΟΥ ΠΙΘΑΝΟΤΗΤΕΣ Στ όσ προηγήθηκν, εξετάσε δύο "κρί" κθεστώτ κθεστώτος προϋποθέτει την επιβίωση όλων των, (,, ( ( ( (η "επιβίωση" του κι το κθεστώς "λύετι"

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο Συναρτήσεις - Όρια - Συνέχεια (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ. 1. Να υπολογίσετε το πεδίο ορισμού της συνάρτησης : ln

ΚΕΦΑΛΑΙΟ 1ο Συναρτήσεις - Όρια - Συνέχεια (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ. 1. Να υπολογίσετε το πεδίο ορισμού της συνάρτησης : ln ΚΕΦΑΛΑΙΟ ο Συναρτήσεις - Όρια - Συνέχεια (Νο ) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ

Διαβάστε περισσότερα

4 η δεκάδα θεµάτων επανάληψης

4 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεάτων επανάληψης 1. ίνεται ισόπλευρο τρίγωνο πλευράς α. Στις πλευρές,, παίρνουε σηεία, Ε, Ζ αντίστοιχα τέτοια ώστε Ε Ζ 1 α Να υπολογίσετε συναρτήσει του α το εβαδόν Του τριγώνου Ζ Του τριγώνου

Διαβάστε περισσότερα

Ζ. ΠΡΟΣΕΓΓΙΣΕΙΣ ΓΙΑ ΣΥΝΕΧΕΙΣ ΡΑΝΤΕΣ. d A. A δ. α βασίζεται στην απλούστερη σχέση. + και 1 & : ( )

Ζ. ΠΡΟΣΕΓΓΙΣΕΙΣ ΓΙΑ ΣΥΝΕΧΕΙΣ ΡΑΝΤΕΣ. d A. A δ. α βασίζεται στην απλούστερη σχέση. + και 1 & : ( ) Ζ. ΠΡΟΣΕΓΓΙΣΕΙΣ ΓΙΑ ΣΥΝΕΧΕΙΣ ΡΑΝΤΕΣ Υποθέτοντς UDD γράφοµε s s I. Όπως είµε η σχέση είνι οριή περίπτωση ( της. Ένς εολότερος τρόπος ν τλήξοµε στην UDD προσέγγιση γι βσίζετι στην πλούστερη σχέση ι εµετλλεύετι

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Όνομα/Επίθετο: Ζήτημα 1ο Να γράψετε στη γλώσσα των συνόλων και λεκτικά ποιο ενδεχόμενο παριστάνει κάθε ένα

Διαβάστε περισσότερα

ΙΚΤΥΑ ΠΑΡΑΓΩΓΗΣ C.A.M.

ΙΚΤΥΑ ΠΑΡΑΓΩΓΗΣ C.A.M. ΙΚΤΥΑ ΠΑΡΑΓΩΓΗΣ C.A.M. Aναονητικά Συστήατα, Γραές Παραγωγής, F.M.S. Γιάννης Α. Φίης Ιανουάριος 3 Πουτεχνείο Κρήτης Π Ε Ρ Ι Ε X Ο Μ Ε Ν Α EIΣΑΓΩΓΗ...3 ΟΥΡΕΣ H ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ...6. Μοντέα Γέννησης Θανάτου...

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηµα ασκήσεων 11/12/2006

Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηµα ασκήσεων 11/12/2006 Τήα Επιστήης και Τεχολογίας Υλικώ Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηα ασκήσεω //006 Μελέτη οοδιάστατου στοιχειακού στερεού ε δύο τροχιακά αά άτοο ε χρήση υβριδικώ ατοικώ τροχιακώ Θεωρούε δύο τροχιακά

Διαβάστε περισσότερα

10. Πολυατομικά Μόρια

10. Πολυατομικά Μόρια 0. Πολυατομιά Μόρια Περίληψη Οι ιδιότητες των πολυατομιών μορίων μπορούν να υπολογισθούν μέσω των στατιστιών συνόλων με βάση τις διαμοριαές αλληλεπιδράσεις. Εδώ παρουσιάζεται ο υπολογισμός των θερμοδυναμιών

Διαβάστε περισσότερα

Διάδοση των Μιονίων στην Ύλη

Διάδοση των Μιονίων στην Ύλη 4 Διάδοση των Μιονίων στην Ύλη Εισαγωγή Σε αυτό το Κεφάλαιο περιγράφουε τις φυσικές διαδικασίες που συνεισφέρουν στην απώλεια ενέργειας ενός ιονίου καθώς αυτό διαδίδεται σε ένα έσο, όπως το νερό ή ο πάγος.

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις δέκατου φυλλαδίου ασκήσεων. 2 x dx = 02 ( 2) 2

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις δέκατου φυλλαδίου ασκήσεων. 2 x dx = 02 ( 2) 2 Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 08-9. Λύσεις δέκατου φυλλαδίου ασκήσεων.. Υπολογίστε το x αν x < 0 4 fx) dx όταν fx) = αν 0 x 3/x αν < x 4 Λύση: Η f ταυτίζεται στο [, 0] με την συνεχή συνάρτηση

Διαβάστε περισσότερα

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι _ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +

Διαβάστε περισσότερα

IV.12 OΜΟΓΕΝΕΙΑ. 1. Μερικές ελαστικότητες. 2. Σχετικά ή ποσοστιαία διαφορικά.

IV.12 OΜΟΓΕΝΕΙΑ. 1. Μερικές ελαστικότητες. 2. Σχετικά ή ποσοστιαία διαφορικά. IV.1 OΜΟΓΕΝΕΙΑ 1.Μεριές ελαστιότητες.σχετιά ή ποσοστιαία διαφοριά 3.Ελαστιότητα λίμαας 4.Ομογενής μηδενιού βαθμού 5.Ομογενής βαθμού 6.Ιδιότητες ομογενών ΠΑΡΑΡΤΗΜΑ 7.Ισοσταθμιές ομογενών 8.Ελαστιότητα υποατάστασης

Διαβάστε περισσότερα