PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

Σχετικά έγγραφα
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Ispitivanje toka i skiciranje grafika funkcija

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

IZVODI ZADACI (I deo)

SISTEMI NELINEARNIH JEDNAČINA

TRIGONOMETRIJSKE FUNKCIJE I I.1.

3.1 Granična vrednost funkcije u tački

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Zadaci iz trigonometrije za seminar

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

Elementi spektralne teorije matrica

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

Racionalni algebarski izrazi

Osnovne teoreme diferencijalnog računa

5 Ispitivanje funkcija

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

Matematka 1 Zadaci za drugi kolokvijum

Teorijske osnove informatike 1

Analitička geometrija

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

1.4 Tangenta i normala

= 10, a u drugom slučaju je broj mogućnosti ( ( 2! = 15. Prema tome krajnji rezultat je S5 3 = ( (

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

4 Numeričko diferenciranje

GIMNAZIJA LAZAREVAC ZADACI IZ MATEMATIKE ZA MATURSKI ISPIT

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

Trigonometrijske nejednačine

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t)

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Zbirka rešenih zadataka iz Matematike I

Matematička analiza 1 dodatni zadaci

6 Primjena trigonometrije u planimetriji

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija

ELEMENTARNA MATEMATIKA 2

O trouglu. mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš

7 Algebarske jednadžbe

Dvanaesti praktikum iz Analize 1

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

RIJEŠENI ZADACI I TEORIJA IZ

Kantonalno takmičenje iz matematike učenika srednjih škola sa područja TK

41. Jednačine koje se svode na kvadratne

Zavrxni ispit iz Matematiqke analize 1

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

x bx c + + = 0 po nepoznatoj x, vrijedi da je

1 Pojam funkcije. f(x)

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Elementarni zadaci iz Euklidske geometrije II

> 0 svakako zadovoljen.

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Računarska grafika. Rasterizacija linije

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

radni nerecenzirani materijal za predavanja

a je vrijednost Q x x iznosi P( a ). Primjenom tog stava zaključuje se da ostatak pri dijeljenju P( x ) sa ( ) = ( 1)

ELEKTROTEHNIČKI ODJEL

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

I Pismeni ispit iz matematike 1 I

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

Računarska grafika. Rasterizacija linije

ELEMENTARNA MATEMATIKA 2

ZANIMLJIVI ZADACI O BROJU 2014 (I)

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

18. listopada listopada / 13

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet.

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Funkcije dviju varjabli (zadaci za vježbu)

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ELEMENTARNA MATEMATIKA 2

Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati:

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Elementarni zadaci iz predmeta Euklidska geometrija 1

Transcript:

Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih brojeva rešiti po x nejednačinu x + x x < 1 3 U skupu realnih brojeva rešiti po x jednačinu sin x + 5 sin x + cos x) + 1 = 0 U skupu realnih brojeva rešiti po x i y sistem jednačina log x + ) 3 + log 3 y + 1) = 6 log x + ) + log 9 1 y+1 = 5 U skupu realnih brojeva rešiti po x jednačinu x+1 x + 7 = 0 6 Odrediti preseke sa y-osom onih tangenti elipse E : x 1 + y delom x-ose zaklapaju orijentisani ugao π = 1 koje sa pozitivnim 7 Izračunati površinu trapeza čije su kraća osnovica i kraci dužine, a duža osnovica sa kracima zaklapa puta manji ugao od ugla izmedu kraće osnovice i kraka 8 Naći zapreminu tela koje nastaje rotacijom pravouglog trougla čije su katete a = i b = 3 oko ose koja sadrži teme kod pravog ugla i paralelna je sa hipotenuzom 9 Neka je T težište centar opisanog kruga) pravilnog šestougla ABCDEF, i neka je O proizvoljna tačka u prostoru a) Dokazati da je OT = 1 6 OA + OB + OC + OD + OE + OF ) b) Ako je O koordinatni početak, a ako je A 1, 3, ) i B 3, 1, ), izračunati ugao izmedu vektora OA i OB 10 Dokazati da je broj 3 n+1 + 10 n 1 deljiv sa 9 za svaki prirodan broj n 11 Koliko se četvorocifrenih brojeva može napisati koristeći cifre 1, 3, 5, 7, 9, takvih da se medu ciframa bar jednom pojavljuje cifra 1 1 Izračunati graničnu vrednost niza a n = n 1 n+3 n 1 n+1, n N Data je funkcija f x) = e x+3 x a) Izračunati prvi izvod funkcije f b) Izračunati tačku minimuma funkcije f na intervalu [, 0]

REŠENJA: p + 1) ± p + 1) + 8p 1 Koreni polinoma f x) su x 1, = = p 1 ± p + 10p + 1, te su x 1 i x jednaki, pozitivni realni brojevi ako i samo ako su zadovoljeni uslovi 1) p + 10p + 1 = 0 i ) x 1 = x = p 1 > 0 Analizom ovih uslova dobijamo: 1) p + 10p + 1 = 0 p 1, = 10 ± 100 ) p 1 > 0 p + 1 < 0 p < 1 = 5 ± 6; - Kako je očigledno p 1 = 5 6 < 1, sledi da 5 6 jeste rešenje zadatka, - kako je 6 > =, to je 6 >, te je p = 5 + 6 > 1, tako da 5 + 6 nije rešenje zadatka Dakle, skup rešenja postavljenog problema je R = { 5 6 } Domen rešavanja jednačine je D = R \ {, }, i za x D je x + x x < 1 x + x x + 1 < 0 x + x 6 x < 0 * Funkcija f x) = x + x 6 je konveksna, a koreni su joj x 1, = 1± 1+8 = {, 3 } * Funkcija g x) = x je konveksna, a koreni su joj x 1, = ± Sledi: 3 f x) + + + g x) + + fx) gx) + + + Prema tome, skup rešenja ) nejednačine je 3 S =, 3 Koristeći jednakosti cos x) = cos x sin x i cos s x = 1 sin x dobijamo sin x + 5 sin x + cos x) + 1 = sin x + 5 sin x + cos x sin x ) + 1 = = 3 sin x + 5 sin x + cos x + 1 = 3 sin x + 5 sin x + 1 sin x ) + 1 = sin x + 5 sin x + Dakle, sin x + 5 sin x + cos x) + 1 = 0 sin x + 5 sin x + = 0 t = sin x t + 5t + = 0 ) ) t = sin x t 1, = 5± 5 16 t = sin x t = t = 1 )) sin x = sin x = 1 ) Jednačina sin x = nema rešenja, a jednakost sin x = 1 važi za x = π 6 + kπ i x = 5π 6 + kπ Dakle, skup rešenja jednačine je R = { π 6 + kπ } { k Z 5π 6 + kπ } k Z S obzirom na to da je logaritamska funkcija definisana na skupu pozitivnih realnih brojeva, sistem jednačina je definisan za one x, y za koje je ) x + ) 3 > 0 y + 1) > 0 x + ) > 0 1 y+1 > 0 x + > 0 y + 1 0 x + 0 y + 1 > 0) x > y 1 x y > 1), te je domen rešavanja sistema jednačina skup D = {x, y) x > y > 1} Kako je

log x + ) 3 = 3 log x + ), log 3 y + 1) = log 3 y + 1), log x + ) = log x + ) = 1 log x + ) = log x + ), log 9 1 y+1 = log 3 y + 1) 1 = 1 log 3 y + 1), polazni sistem je ekvivalentan sa 3 log x + ) + log 3 y + 1) = 6 log x + ) 1 log 3 y + 1) = te uvodenjem smene p = log x + ) i q = log 3 y + 1) dobijamo 3p + q = 6 p 1 q = Vraćanjem smene sledi log x + ) = log 3 y + 1) = 0 11p = p 1 q = p = q = 0 x + = = y + 1 = 3 0 = 1 x = y = 0 Kako je, 0) D, sistem ima jedno rešenje, tj skup rešenja je R = {, 0)} 5 x+1 x + 7 = 0 x x ) 1 + 7 = 0 x = t t t 1 + 7 = 0 / t 0 ) za t = 0, jednačina x = 0 nema rešenja) x = t t + 7t = 0 ) x = t t 1, = 7± 9+3 = {, 1 } ) x = x = 1 ) Vrednost eksponencijalne funkcije je uvek pozitivna, te jednačina x = nema rešenja, a rešenje jednačine x = 1 = 1 je x = 1 Dakle, skup rešenja je R = { 1} 6 Tangenta t koja sa pozitivnim delom x-ose zaklapa ugao od 5 ima jednačinu t : y = tg 5 )x + n = x + n Presek tangente t sa y-osom je tačka 0, n), tako da je zadatak odrediti n R za koje prava t : y = x + n dodiruje elipsu, tj ima tačno jednu zajedničku tačku sa elipsom, odnosno treba odrediti n R za koje sistem jednačina x [e] 1 + y = 1 [t] y = x + n ima tačno jedno rešenje po x, y) Uvrštavanjem [t] u [e] dobijamo, y t 1 t x x 1 + x+n) = 1 x + x + n) = 5x + nx + n ) = 0 Poslednja kvadratna jednačina ima tačno jedno rešenje akko joj je diskriminanta jednaka nuli, tj akko je n 0 n ) = 0 n + 0 = 0 n = ± 5 Dakle, dve tangente na elipsu su t 1 : y = x 5 i t : y = x 5, i njihovi preseci sa y-osom su { 0, 5 ), 0, 5 )} 7 Neka je a = kraća osnovica, b duža osnovica, neka su c = kraci, i neka je α oštar, a β tup ugao trapeza Neka je h visina trapeza, i l = b 1 vidi sliku) Iz β = α α + β = 180 sledi α = 60 a Iz sin α = h tj sledi sin 60 = 3 = h sledi h = β β 3 Dalje dobijamo l = c c c h = 1 i b = a + l = Konačno, površina trapeza je P = a+b h = 3 h h α l l 3 α b

8 Rotacijom posmatranog trougla nastaje valjak V iz koga su izvadene kupe V 1 i V vidi sliku), tako da ćemo zapreminu posmatranog tela dobiti tako što ćemo od zapremine valjka oduzeti zapremine kupa V 1 i V Visina valjka V je hipotenuza posmatranog pravouglog trougla: H = a + b = Neka je r visina posmatranog trougla koja odgovara stranici H tj temenu kod pravog ugla Iz površine trugla P = ab = Hr sledi 3 = r, odnosno r = 6 Sada dobijamo zapreminu valjka: V = r πh = 36 π Označimo sa x i y odsečke na H koje gradi visina r Duži x i y su redom visine valjaka V 1 i V Njihove dužine su x = b r = 9, y = H x = Zapremine kupa V 1 i V su V 1 = 1 3 r πx = 108 π, V = 1 3 r πy = 8 π, te je zapremina obrtnog tela V V 1 V = π 9 a) Sabiranjem očiglednih jednakosti OA = OT + T A OC = OT + T C OB = OT + T B OD = OT + T D dobijamo OA + ) OB + OC + OD + OE + OF = 6OT + T A + T D + = 6 OT + 0 + 0 + 0 = 6 OT, y H x OE = OT + T E OF = OT + T F a r b V V 1 ) ) T B + T E + T C + T F = te deljenjem zadnje jednakosti sa 6 sledi tvrdenje b) OA = A 1, 3, ), OB = B 3, 1, ) S jedne strane je ) OA OB = 1 3 + 3 1 + =, a s druge )) OA OB = OA OB cos OA, OB = = 1 + 3 ) ) )) + 3 + 1 + cos OA, OB = 8 cos OA, OB )) )) )) Iz = 8 cos OA, OB sledi cos OA, OB = 1, odakle sledi da je ) OA, OB = π 3 10 Matematičkom indukcijom dokazujemo da za sve n N važi F n) : 9 3 n+1 + 10 n 1 ), tj da je 3 n+1 + 10 n 1 = 9m n za neko m n Z Za n = 1 je 3 1+1 + 10 1 1 = 5 = 9 5; pretpostavimo da je tačno [ ]F k), tj da je 3 k+1 + 10 k 1 = 9m k ; za n = k + 1 je 3 k+1)+1 + 10 k+1) 1 = 1 k+1 + 10 10 k 1 = 3 k+1 +10 k 1 +9 k+1 +9 10k 1 [ ] = 9m k +9 k+1 +9 10 k 1 = 9 m k + k+1 + 10 k 1), gde je m k + k+1 + 10 k 1 = m k+1 očigledno ceo broj 11 Traženi broj n možemo dobiti tako što ćemo od ukupnog broja -cifrenih brojeva napisanih pomoću cifara 1, 3, 5, 7, 9 oduzeti broj -cifrenih brojeva napisanih pomoću cifara 3, 5, 7, 9 tj bez ijedne cifre 1) Tako dobijamo n = 5 = 65 56 = 369

n ) 1 lim a 1 n = lim n n n + 3 n 1 n 1 ) n + 1) n + 3) n 1 ) = lim = n + 1 n n + 3)n + 1) n 3 5n + = lim n n + n + 3 = lim n 3 5n + n n + n + 3 : n n = lim n 5 + n n 1 + n + 3 = 5 + 0 = 1 + 0 + 0 n Data je funkcija f x) = e x+3 x a) f x) = e x+3 1 1 = e x+3 1 b) Najpre izračunavamo stacionarne tačke: f x) = e x+3 1 = 0 e x+3 = 1 = e 0 x + 3 = 0 x = 3 [, 0] Kako je f x) = e x+3 1 0 = e x+3 i f 3) = 1 > 0, sledi da je x 0 = 3 tačka lokalnog minimuma funkcije f x) na intervalu [, 0], i funkcija f u njoj dostiže vrednost f 3) = e 3+3 3) = Pri tome na krajevima intervala važi f ) = e +3 ) = 1 e + > i f 0) = e3 0 > 3 = 8 >, te je tačka x 0 = 3 tačka u kojoj funkcija f dostiže apsolutni minimum na intervalu [, 0]