7. MEHANIČKI VALOVI I ZVUK
|
|
- Φιλομήλα Βιτάλη
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ELEKTROTEHNIČKI FAKULTET SARAJEVO INŽENJERSKA FIZIKA I 7. MEHANIČKI VALOVI I ZVUK 7.1 Prostiranje valova u elastičnoj sredini Ako se na jednom mjestu elastične sredine (čvrste, tečne ili plinovite) izazovu oscilacije njenih čestica, tada će se, zbog međudjelovanja čestica, to osciliranje širiti kroz sredinu nekom brzinom v. Proces prostiranja oscilacija u prostoru naziva se val ili talas. Val ne prenosi čestice sredine u kojoj se prostire, one samo vrše osciliranje oko ravnotežnih položaja. Longitudinalni val je takav val kod kojeg čestice osciliraju duž pravca prostiranja. Transverzalni val je takav val kod kojeg čestice osciliraju u smjeru koji je okomit na pravac prostiranja vala. Mehanički transverzalni val nastaje samo u sredini koja sadrži otpor na smicanje. U tečnoj i plinovitoj fazi moguć je nastanak samo longitudinalnih valova. Crtež 7.1 Na crtežu 7.1, prikazano je kretanje čestica pri prostiranju transverzalnog vala. Čestice označene sa 1,,3 itd. pomaknute su jedna od druge na rastojanju 1/4 vt, to je jednako četvrtini puta kojeg val pređe za vrijeme jednog perioda. Čestice koje jedna od druge stoje na rastojanju vt osciliraju u istoj fazi. Rastojanje između najbližih čestica koje osciliraju u istoj fazi naziva se valna dužina. 68
2 Valna dužina je prema tome jednaka proizvodu brzine vala i perioda. λ v T (7.1) Ako zamijenimo u izrazu (7.1) T s 1/f dobijemo v λ (7.) f Geometrijsko mjesto tačaka do kojeg dolaze oscilacije u momentu vremena t naziva se valni front, to je površina koja dijeli dio prostora koji je zahvaćen u valni proces od oblasti u kojoj još nema oscilacija. Geometrijsko mjesto tačaka koje osciliraju sa istom fazom naziva se valna površina. Valne površine mogu da budu bilo kojeg oblika, najjednostavnije su one koje imaju oblik ravni ili sfere. U tim slučajevima val se naziva ravni ili sferni. U ravnom valu valne površine predstavljaju sistem koncentričnih sfera, crtež 7.. a) Sferni val b) Ravni val Crtež 7. Pravci duž kojih se šire oscilacije od tačke do tačke zovemo zrakama vala, zrake su okomite na valne površine. Iz točkastog izvora u izotropnom sredstvu (tj. sredstvu koje u svim smjerovima ima iste osobine) širi se sferni val čije su valne fronte koncentrične sfere (lopte) crtež 7.a, a zrake radijalni pravci. Ravni val nastaje iz beskonačno dalekog točkastog izvora, valne fronte su ravnine, a zrake paralelni pravci, crtež 7.b. 7. Jednadžba ravnog i sfernog vala 69
3 Valna jednadžba naziva se izraz koji daje pomjeranje ψ oscilirajuće točke kao funkciju njenih koordinata x, y, z i vremena t ψ ψ ( x, y, z, t) (7.3) Funkcija (7.3) mora da bude periodična kako u odnosu na vrijeme, t tako i u odnosu na koordinate x, y, z. Nađimo oblik funkcije u slučaju ravnog vala koji se prostire duž ose x ψ ψ ( x,t) (7.4) Valne površine normalne su na osu x. Neka oscilacije tačaka koje leže u ravni x 0 imaju oblik ψ ψ ( 0, t) Acosωt (7.5) Nađimo oblik osciliranja čestice u ravni koja odgovara proizvoljnoj vrijednosti x. Da bi val prešao put od ravni x 0 do ravni x valu je potrebno vrijeme τ x τ (7.6) v gdje je v brzina prostiranja vala. Oscilacije čestica koje leže u ravni x zaostaju u vremenu, za τ Crtež 7.3. Prema tome, jednadžba ravnog vala može se napisati u obliku x ψ Acosω( t τ ) Acosω t Pri ovome pretpostavljamo da je amplituda oscilacija u svim tačkama jedna ista, tj. nema apsorpcije valova. Neka je vrijednost faze u jedndžbi (7.7) jednaka nekoj stalnoj vrijednosti x ω t const. (7.8) Izraz (7.8) daje vezu između vremena t i onog mjesta x u kojem se u danom momentu ostvaruju iste vrijednosti faze. Diferenciranjem (7.8) dobivamo brzinu kojom se pomjera dana vrijednost faze 1 dt dx 0 (7.9) v odnosno dx + v (7.10) dt (7.7) 70
4 Prema tome, brzina prostiranja vala u jednadžbi (7.7) jeste brzina pomjeranja faze, pa se zove fazna brzina. Iz jednadžbe (7.10) slijedi da je brzina vala pozitivna, prema tome (7.7) opisuje val koji se rasprostire u stranu rasta x (slijeva u desno), val koji se rasprostire u stranu suprotnu ima oblik x ψ Acos ω t + (7.11) Izjednačimo fazu sa konstantom i diferencirajmo, dobijemo dx v (7.1) dt Rezultat pokazuje da se val kreće u suprotnom smjeru. Jednadžbi ravnog vala može se dati simetričan oblik u odnosu na t i x. Uvedimo valni broj k, π k (7.13) λ Veza između valnog broja k i kružne frekvencije ω i fazne brzine vala v ima oblik ω v (7.14) k Jednadžba ravnog vala može se napisati u obliku ( t kx) ψ A cos ω ± (7.15) Promatrajmo jednadžbu sfernog vala. Sferni val nastaje od izvora koji se može smatrati točkom. U slučaju da je brzina prostiranja u svim smjerovima ista val koji nastaje od izvora (točkastog) mora biti sferni. Neka je faza osciliranja jednaka ω t tada tačke koje leže na valnoj površini radijusa r mora r oscilirati sa fazom ω t. Amplituda osciliranja u tom slučaju ako sredina ne apsorbira energiju vala neće ostati konstantna, ona se smanjuje po zakonu 1/r Jednadžba sfernog vala ima oblik A r ψ cos ω t r v (7.16) Ova jednadžba vrijedi samo za velike r, u odnosu na dimenziju izvora. Kad r teži nuli amplituda postaje beskonačna, što upravo pokazuje o neprimjenjivosti jednadžbe (7.16) za male vrijednosti r. 7.3 Jednadžba ravnog vala koji se prostire u proizvoljnom smjeru Nađimo jednadžbu ravnog vala koji se prostire u pravcu koji sa osama x, y, z obrazuje uglove αβγ,,. Neka oscilacije koje prolaze kroz koordinatni početak, crtež 7.4, imaju oblik ψ 0 Acosωt (7.17) Uzmimo valnu površinu koja od koordinatnog početka stoji na rastojanju l. Oscilacije u toj ravni 1 zaostaju za oscilacijama (.17) za vrijeme τ v l ψ Acos ω t (7.18) Izrazimo l preko radijus vektora r. Lako je uočiti da skalarni proizvod jediničnog vektora normale n s radijus vektorom r bilo koje tačke površine ima istu vrijednost koja je jednaka l n r r cos ϕ l (7.19) Uvrštavanjem izraza (7.19) u (7.18) dobivamo 71
5 ω ψ Acos ωt n r Crtež 7.4 Omjer v ω jednak je valnom broju k. Vektor k k n koji je po modulu jednak valnom broju k π λ (7.1) i koji ima smjer normale na površinu naziva se valni vektor. Uvođenjem k u (7.0), dobijemo ψ r, t Acos ωt k r (7.) Jednadžba (7.) daje otklon od ravnotežnog položaja s radijus vektorom r u momentu vremena t. Da bi prešli od radijus vektora tačke r njenim koordinatama x, y, z, izrazimo skalarni proizvod k r projekcijama vektora na koordinatne ose: k r k x x + k y y + k z z (7.3) Tada jednadžba ravnog vala dobiva oblik ψ x, y, z, t Acos ωt k x k y k z (7.4) ( ) ( ) gdje je x y z π π π k x cos α, k y cos β, k z cos γ (7.5) λ λ λ U slučaju kada se r podudara sa osom x, tada je k x k, k y k z 0 te jednadžba (7.4) prelazi u jednadžbu (7.15). Jednadžba ravnog vala ponekad se piše i u obliku ψ Ae ω i t k r pri čemu se podrazumijeva da se koristi samo realni dio tog izraza, npr. [ ( ωt kx) + i sin( t kx) ] (7.6) ψ A cos ω (7.7) 7.4. Valna jednadžba Jednadžba bilo kojeg vala je rješenje diferencijalne jednadžbe koju zovemo valna jednadžba. 7
6 Promatrajmo ravni val u smjeru ose x ψ x, t ψ Acos ωt kx (7.8) ( ) ( ) Nađimo drugu parcijalnu derivaciju po koordinatama i vremenu od funkcije ψ ( xt, ) 1 ψ ω Acos( ωt kx) ω ψ ψ k Acos( ωt kx) k ψ (7.9) Iz jednadžba (7.9) dobivamo ψ k ψ (7.30) ω k 1 Uzevši u obzir vezu, dobivamo ω v ψ 1 ψ (7.31) v Jednadžba (7.31) predstavlja valnu jednadžbu. Ovo možemo analogno proširiti na sve tri dimenzije, pa valna jednadžba u tri dimenzije ima oblik ψ ψ ψ 1 ψ + + (7.3) y z v Jednadžba (7.3) može se napisati koristeći Laplasov operator ψ ψ ψ ψ + + y z odnosno 1 ψ ψ v (7.33) (7.34) 7.5 Brzina prostiranja elastičnih valova Neka se u pravcu x ose prostire longitudinalni ravni val. Izdvojimo u sredini cilindrični volumen visine x sa površinom koja je jednaka jedinici. Ako osnova cilindra sa koordinatom x ima u nekom trenutku pomjeranje ψ onda će pomjeranje osnove s koordinatom x+ x biti ψ + ψ. Prema tome, razmatrani volumen se deformira i dobiva izduženje ψ (ako je ψ < 0 to predstavlja sažimanje). ψ Veličina, ε predstavlja srednju relativnu deformaciju cilindra. Zbog toga što se ne mijenja po x linearnom zakonu, stvorena deformacija na raznim presjecima cilindra neće biti jednaka. Da bismo dobili deformaciju na presjeku x potrebno je da x teži nuli. Prema tome je 1 Funkcija ψ ( xyzt,,,), je funkcija četiri nezavisno promjenjive, pa se ovdje moraju uvesti parcijalni izvodi funkcije, koji se pišu simbolima,, y, z,. Parcijalni izvod za funkcije više promjenjivih, po nekoj određenoj promjenjivoj, računamo kao običan izvod po toj promjenjivoj, s tim da se ostale varijable smatraju konstantne. Laplasov operator: + +. y z 73
7 ψ ε lim (7.35) x0 x Postojanje deformacije istezanja svjedoči o postojanju normalnog naprezanja σ koje je pri malim deformacijama proporcionalno veličini deformacije. Suglasno Hookeovom (Hukovom) zakonu, σ E ε, gdje je E Youngov (Jang) modul a σ normalno naprezanje (σ F ), imamo s σ E ε E (7.36) Napomenimo da relativna deformacija a prema tome i naprezanje u fiksiranom momentu vremena zavise od x. Tamo gdje su otkloni čestice od položaja ravnoteže maksimalni, deformacije i naprezanja su jednaki nuli. U mjestima gdje čestice prolaze kroz položaj ravnoteže deformacija i naprezanje dostižu maksimalnu vrijednost pri čemu se pozitivne i negativne deformacije (istezanje i sabijanje) naizmjenično smjenjuju (longitudinalni val ), crtež 7.5. Napišimo jednadžbu kretanja za jedinični ci1indar. Uzimajući da je x veoma malen, ubrzanje sistema može se smatrati konstantno. Masa cilindra jednaka je ρ xs, gdje je gustoća nedeformirane sredine. Crtež 7.5 Crtež 7.6 Sila koja djeluje na cilindar, jednaka je razlici sila na presjeku FF -F 1.Prema (7.36) imamo x x i na presjeku x0 tj. 74
8 F SE (7.37) x 0 Veličinu možemo razviti u red 3 za male vrijednosti x kao + x + x 0 0 Uvrštavanjem u relaciju (.37) dobivamo F SE x SE x x x ψ (7.38) Sa druge strane, sila je prema II Newtonovom zakonu jednaka F ψ ψ ψ m ρ V ρs x (7.39) Izjednačavanjem relacija (7.39) i (7.38) dobivamo jednadžbu oblika valne jednadžbe ψ ρ ψ (7.40) E 1 ρ Uspoređivanjem jednadžbe (7.40) sa valnom jednadžbom (7.31 ) vidimo da je. Prema v E tome brzina longitudinalnih valova jednaka je kvadratnom korijenu iz Youngovog modula podjeljnog s gustoćom sredine v E ρ Analogna računanja za transverzalne valove dovode do slijedećeg izraza za brzinu (7.4) G v ρ gdje je G modul smicanja. 7.6 Energija elastičnog vala (7.41) Promatrat ćemo sredinu u kojoj se prostire longitudinalni ravni val, izdvojivši elementarni volumen V, ali tako malen da se deformacije i brzina mogu smatrati istim i jednakim u svim tačkama. Da bi izračunali ukupnu energiju sistema moramo prethodno izračunati potencijalnu energiju elastične deformacije pri istezanju ili sabijanju. Energiju istegnutog (sabijenog) štapa za l, dobit ćemo preko rada vanjskih si1a. Pošto je sila promjenljiva, rad je jednak. W l 0 F dx (7.43) gdje je x - izduženje u procesu deformacije i ide od 0 do l. Znači, sila koja odgovara izduženju x, prema Hookeovom zakonu ima oblik E S F x (7.44) l Uvrštavanjem (7.44) u (7.43) možemo izračunati rad, odnosno energiju deformisanog tijela. 3 Funkcija F(x) može se razviti u Mac Lorinov red, za male (infinitezimalne) vrijednosti x kao ( ) ( 0) '( 0) F x F + F x+ 75
9 l l E S E S x E S l l W xdx (7.45) l l 0 0 l Konačno imamo da je potencijalna energija jednaka E V E ε p (7.46) Izraz za potencijalnu energiju elementarnog volumena V ima oblik ρv E p V (7.47) gdje je, E ρv, Youngov modul elastičnosti, ε, relativna deformacija. Promatrani volumen sadrži također i kinetičku energiju ρ V E k (7.48) gdje je, m ρ V, masa i v brzina danog elementa V. Sabiranjem izraza (7.48) i (7.47) dobit ćemo ukupnu energiju ρ E Ek + E p + v (7.49) Dijeljenjem energije E sa volumenom V u kojem se ona sadrži, dobit ćemo gustoću energije E 1 u ρ + v (7.50) V Parcijalnim diferenciranjem jednadžba ravnog vala po t i po x dobivamo x ωasinω t i ω x Asin ω t (7.51) v Uvrštavanjem izraza (7.51) u (7.30) dobit ćemo izraz za gustoću energije ρ x u A ω sin ω t ili u ρa ω sin ( ωt kx) (7.5) Vidimo da se gustoću energije mijenja po zakonu kvadrata sinusne funkcije. Pošto je srednja vrijednost kvadrata sinusa jednaka 1/, srednja vrijednost gustoće energije po volumenu u svakoj točki sredine biće jednaka ρ u A ω (7.53) Gustoću energije proporcionalna je gustoći sredine, kvadratu frekvencije i kvadratu amplitude vala. Energija se prenosi samim valom od izvora oscilacije do različitih tačaka sredine, prema tome val sa sobom prenosi energiju. Količina energije koju prenosi val kroz neku površinu u jedinici vremena naziva se tok energije ili fluks kroz površinu. 76
10 Fluks energije je skalarna veličina čije su dimenzije jednake dimenziji energije podijeljene sa dimenzijom vremena, tj. podudara se sa dimenzijom snage. Prema tome fluks se mjeri u vatima (W). Fluks energije u raznim točkama sredine može imati različitu intenzivnost. Za karakteristiku fluksa energije u raznim točkama prostora uvodi se vektorska veličina koja se zove gustoća toka energije. Smjer vektora gustoće fluksa energije podudara se s smjerom u kojem se prenosi energija. Neka se kroz površinu S okomitu na pravac prostiranja vala prenosi za vrijeme t energija E. Tada će gustoća fluksa energije po definiciji biti jednaka E j S t S obzirom da je E fluks energije t φ φ j S Kroz površinu S za vrijeme osnovom S i visinom v t, crtež 7.7., kroz površinu S može se pisati (7.54) (7.55) t prenijet će se energija koja je sadržana u volumenu valjka sa Crtež 7.7 Ako su dimenzije valjka dovoljno male tako da bismo gustoću energije u svim tačkama valjka mogli smatrati jednakom, onda se E može naći kao proizvod gustoće energije i volumena valjka, S v t, tj. E u S v t (7.56) Kad taj izraz za E uvrstimo u formulu (7.54) dobit ćemo j u v Razmatrajući faznu brzinu v kao vektor čiji se pravac podudara sa smjerom prostiranja vala može se napisati j u v (7.57) Srednja vrijednost vektora gustoća fluksa energije jednaka je 1 j sr u v ρa ω v (7.58) Intenzitet vala I jednak je srednjoj vrijednosti energije, koju val prenosi kroz jediničnu površinu u jedinici vremena, a to je upravo skalarna vrijednost vektora tj. I 1 ρva ω j sr (7.59) 77
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet
Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Vektorska analiza doc. dr. Edin Berberović.
Vektorska analiza doc. dr. Edin Berberović eberberovic@mf.unze.ba Vektorska analiza Vektorska algebra (ponavljanje) Vektorske funkcije (funkcije sa vektorima) Jednostavna analiza (diferenciranje) Učenje
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Oscilacije (podsetnik)
Oscilacije (podsetnik) -Oscilacije prestavljaju periodično ponavljanje određene fizičke veličine u vremenu. -U mehanici telo osciluje ako periodično prolazi kroz iste položaje tj. kretanje se ponavlja.
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
n F Δ s= F d s [ J ] =m g h Kinetičku energiju tijelo posjeduje usljed kretanja na nekom putu. zatranslaciju: E k = (m v² ) 2 za rotaciju: E k
1. Definisati mehanički rad, snagu, energiju i napisati formule u slučaju translacije i rotacije. Rad se određuje proizvodom sile koja djeluje na tijelo i rastojanja koje tijelo pređe usljed djelovanja
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
V(x,y,z) razmatrane povrsi S
1. Napisati izraz koji omogucuje izracunavanje skalarne funkcije elektricnog potencijala V(x,y,z) u elektrostaskom polju, ako nema prostornoo rasporedjenih elekricnih naboja. Laplaceova diferencijalna
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Analitička geometrija
1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A
Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja
Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu
Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:
ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Analitička geometrija 1. Tačka 1. MF000 Neka su A(1, 1) i B(,11) tačke u koordinatnoj ravni Oxy. Ako tačka S deli duž AB
PROSTORNI STATIČKI ODREĐENI SUSTAVI
PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y
( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj
Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Fizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009.
Fakule elekoehnike, sojasva i bodogadnje Računasvo Fiika Audione vježbe - 7 lekomagneski valovi 15. avnja 9. Ivica Soić (Ivica.Soic@fesb.h) Mawellove jednadžbe inegalni i difeencijalni oblik 1.. 3. 4.
Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika
1. Kinematika Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika Kinematika (grč. kinein = gibati) je dio mehanike koji
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Geometrija (I smer) deo 2: Afine transformacije
Geometrija (I smer) deo 2: Afine transformacije Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Transformacije koordinata tačaka Transformacije koordinata tačaka Pretpostavimo da za bazne
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.
Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,
RAD, SNAGA I ENERGIJA
RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.
Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =
Prostorni spojeni sistemi
Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka
( + ) ( ) Derivacija funkcije y = f x, u tocki x, koja je definirana u intervalu a,b jednaka je granicnoj vrijednosti ili limesu izraza:
. DERIVACIJA FUNKCIJE. Pojam derivacije Derivacija funkcije f, u tocki, koja je definirana u intervalu a,b jednaka je granicnoj vrijednosti ili limesu izraza: f lim ili f lim Funkcija je u tocki Obrat
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.
. Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.
MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti
MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M