ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

Σχετικά έγγραφα
IZVODI ZADACI (I deo)

Ispitivanje toka i skiciranje grafika funkcija

Na grafiku bi to značilo :

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

3.1 Granična vrednost funkcije u tački

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

IZVODI ZADACI (I deo)

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

Osnovne teoreme diferencijalnog računa

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

5 Ispitivanje funkcija

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

Riješeni zadaci: Limes funkcije. Neprekidnost

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

18. listopada listopada / 13

Trigonometrijske nejednačine

Matematka 1 Zadaci za drugi kolokvijum

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

41. Jednačine koje se svode na kvadratne

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

IspitivaƬe funkcija. Teorijski uvod

5. Karakteristične funkcije

4. poglavlje (korigirano) LIMESI FUNKCIJA

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

4 Numeričko diferenciranje

Elementi spektralne teorije matrica

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

Zavrxni ispit iz Matematiqke analize 1

Matematička analiza 1 dodatni zadaci

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

Dvanaesti praktikum iz Analize 1

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

4 Izvodi i diferencijali

Teorijske osnove informatike 1

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK

1.4 Tangenta i normala

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

I Pismeni ispit iz matematike 1 I

Seminar 11 (Ispitivanje domene i globalnih svojstava funkcije)

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

SISTEMI NELINEARNIH JEDNAČINA

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

Granične vrednosti realnih funkcija i neprekidnost

RIJEŠENI ZADACI I TEORIJA IZ

METODA SEČICE I REGULA FALSI

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

1 Pojam funkcije. f(x)

ELEKTROTEHNIČKI ODJEL

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

3.1. Granične vrednosti funkcija

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

Trigonometrijski oblik kompleksnog broja

Računarska grafika. Rasterizacija linije

numeričkih deskriptivnih mera.

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

APROKSIMACIJA FUNKCIJA

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

TRIGONOMETRIJA TROKUTA

Matematika 1 - vježbe. 11. prosinca 2015.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Operacije s matricama

Funkcije dviju varjabli (zadaci za vježbu)

Linearna algebra 2 prvi kolokvij,

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Riješeni zadaci: Nizovi realnih brojeva

Zadaci iz trigonometrije za seminar

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Kaskadna kompenzacija SAU

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t)

Dužina luka i oskulatorna ravan

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

Transcript:

ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako oni rade tako i vi Još jedna stvar, neki profesori ne ispituju horizontalnu asimptotu kao posebnu, već to odrade u sklopu kose asimptote Mi ćemo pokušati da vam objasnimo svaku asimptotu posebno Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački Postoje tri vrste asimptota: - vertikalna - horizontalna - kosa - vertikalna Potencijalna vertikalna asimptota se nalazi u prekidima iz oblasti definisanosti Ako je recimo tačka Θ prekid, moramo ispitati kako se funkcija ponaša u nekoj okolini te tačke, pa tražimo dva esa: f ( ) i Θ+ ε, kadε f ( ) Ako su rešenja ova dva esa + ili - onda je prava Θ Θ ε, kadε vertikalna asimptota, a ako dobijemo neki broj za rešenje, onda funkcija teži tom broju ( po ipsilonu) Pazite: Za svaki prekid mora da se traže oba esa, osim možda ako funkcija nije negde definisana - horizontalna Ovde tražimo dva esa: f ( ) + i f ( ) Ako kao rešenje dobijemo neki broj, recimo #, onda je # horizontalna asimptota, a ako dobijemo + ili - onda kažemo da nema horizontalna asimptota - kosa Kosa asimptota je prava k + n k f ( ) i n [ f ( ) k] Naravno, potrebno je raditi ove ese i za + i za -, naročito kod složenijih funkcija,jer se može desiti da nema ove asimptote sa obe strane AKO IMA HORIZONTALNA ASIMPTOTA, KOSA NEMA! wwwmatematiranjecom

Pre nego krenemo sa izradom zadataka, podsetimo se kako se traži oblast definisanosti : OBLAST DEFINISANOSTI FUNKCIJE: P( ) Ako je data racionalna funkcija Q( ) Ako je data ln, onda je > onda je Q() Ako je data Θ, onda je Θ Ako je data 3 @, onda je svuda definisana Funkcija e je svuda definisana Ako je data arcsin @ onda je @ Ako je data arctg % onda je svuda definisana Nadji asimptote sledećih funkcija: ZADACI a) b) + 4 4 v) Rešenja: + a) vertikalna Funkcija je definisana za to jest To nam govori da je vertikalna asimptota Tražimo sada esa: + + + ε + pazi: samo dole menjamo +ε, jer nam gore to nista ne znači + ε + + + + ε - ŠTA OVO ZNAČI KONKRETNO NA GRAFIKU? POGLEDAJMO: ε wwwmatematiranjecom

+ + Ovo je žuta crta na grafiku, a znači da kada se približava sa pozitivne strane(+ε ) da + funkcija teži + + - Ovo je crvena crta na grafiku, a znači da kada se približava sa negativne strane (-ε ) da funkcija teži - Horizontalna: +, što znači da je horizontalna asimptota i da kose nema! Na grafiku: ± wwwmatematiranjecom

b) 4 Funkcija je definisana za to jest Onda je vertikalna asimptota Tražimo sada esa: 4 4 3 3 - ( žuta crta na grafiku) + ε + ε + + 4 4 3 3 + ( crvena crta na grafiku) ε ε 4 ± Ovo nam govori da nema horizontalne asimptote pa moramo tražiti kosu! ± kosa asimptota: Kosa asimptota je prava k + n k ± f ( ) i n [ f ( ) k] ± k ± 4 ± 4 (pogledaj fajl granične vrednosti funkcija, zadaci (i deo)) n [ f ( ) k] ± 4 4 ( ) 4 + 4 ± ± ± ± Sada k i n zamenimo u formulu: k + n i dobijamo da je + kosa asimptota + - wwwmatematiranjecom

4 v) Funkcija je definisana za to jest ( )( + ) to jest i Ovo znači da moramo tražiti četiri esa, za + i za sa obe strane 4 4 Pazi, pametno je dole izraz napisati kao razliku kvadrata, pa tek onda menjati ( )( + ) + + 4 3 3 + (plava crta) ( ( + ε ))( + + ε ) ( ε ) ( ε ) 4 4 4 3 ( )( + ) ( ( ε ))( + ε ) ( + ε ) 3 - (crvena crta) ε 4 4 ( ) 4 ( )( + ) ( ( + ε ))( + ( + ε )) + + 3 3 - ( žuta crta) ( ε )ε ε 4 4 ( ) 4 ( )( + ) ( ( ε ))( + ( ε )) 3 3 + ( zelena crta) ( + ε )( ε ) ( ε ) 4 pa je - horizontalna asimptota pa kose asimptote nema ± - - - - wwwmatematiranjecom

Nadji asimptote sledećih funkcija: a) e b) e Rešenja: a) e Funkcija je definisana za, pa je potencijalna vertikalna asimptota e e + ε e + + ε, kadε (crvena crta na grafiku) ε, kadε e e ε e Šta sad ovo znači? Trebali smo da dobijemo + ili beskonačno Ovo znači da kada teži nuli sa leve, negativne strane, funkcija teži nuli, što na grafiku prikazujemo STRELICOM e + e + e e e e Dakle je horizontalna asimptota! wwwmatematiranjecom

b) e Funkcija je definisana za, pa je potencijalna vertikalna asimptota e ( + ε ) e + ε o a ovo je neodređen izraz! Ideja je da iskoristimo Lopitalovu teoremu, ali pre toga moramo prepraviti funkciju da bude oblika ili e ε + e + ε Ako ovde zamenimo da teži nuli, dobijamo, pa smemo da koristimo Lopitalovu teoremu e ε + crta) e + ε tražimo izvod gore, izvod dole, posebno e + ε ( ) e e + ε e + (Žuta + ε, kadε ε e ( ε ) e o (strelica) ε e + e o e o e o o e o e o Dakle, nema horizontalne asimptote, pa moramo potražiti kosu: Kosa asimptota je prava k + n k ± f ( ) i n [ f ( ) k] ± k ± f ( ) e e e e ± ± n [ f ( ) k] ± [ e ] [ e ] sličan trik kao malopre, da bi mogli da upotrebimo Lopitala ± ± e ± e ( ) sada je ovaj izraz oblika,tražimo izvode e ± e e ±

wwwmatematiranjecom Dobili smo kosu asimptotu + + - 3 Nadji asimptote funkcije: + 4 Rešenje: Pošto je izraz + 4 > za svako, funkcija je svuda definisana, a to nam govori da ona nema vertikalnih asimptota! ± ± + 4 4 ± ( + ) odvojiti ese za + i za beskonačno! ( + 4 ) PAZI! Pošto smo dole dobili apsolutnu vrednost, moramo + 4 ( + ) ( + 4 ) - Vrlo neobična situacija koja se ipak javlja kod korenih funkcija:

wwwmatematiranjecom KАД X TEŽI + BESKONAČNO HORIZONTALNA ASIMPTOTA JE KАД X TEŽI - BESKONAČNO HORIZONTALNA ASIMPTOTA JE - Na slici bi to izgledalo ovako: - - 4 Nadji asimptote funkcije: ln + Najpre kao i uvek moramo ispitati oblast definisanosti: > + Najbolje je da idemo preko tablice: (pogledaj fajl sa nejednačinama iz prve godine) - - + - - - + + - + + + - + + Ovo nam dakle govori da je funkcija definisana (, ) (, ), to jest izmedju i je NEMA! - -

wwwmatematiranjecom To znači da ćemo tražiti za es samo sa desne strane, a za - samo sa leve strane! ln [Kako je ln neprekidna funkcija, ona može da zameni mesto sa ] + ε + + ε ln ln (crvena crta) + 3 ln ln ln ln + ε + ε ε (zelena crta) - - ln ln ln ± + ± + Dakle (- osa) je horizontalna asimptota(plave crtke) - - +