IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

Σχετικά έγγραφα
IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo)

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

Osnovne teoreme diferencijalnog računa

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK

3.1 Granična vrednost funkcije u tački

41. Jednačine koje se svode na kvadratne

Matematka 1 Zadaci za drugi kolokvijum

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t)

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Elementi spektralne teorije matrica

4 Izvodi i diferencijali

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

Trigonometrijske nejednačine

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Teorijske osnove informatike 1

Na grafiku bi to značilo :

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

4 Numeričko diferenciranje

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

5 Ispitivanje funkcija

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

1.4 Tangenta i normala

DOMAĆA ZADAĆA 5. /Formulacije i rješenja zadataka/ - INŽENJERSKA MATEMATIKA 1 ak. 2009/2010. Selma Grebović. Sarajevo, Decembar 2009.

5. Karakteristične funkcije

Ispitivanje toka i skiciranje grafika funkcija

Riješeni zadaci: Limes funkcije. Neprekidnost

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

ELEKTROTEHNIČKI ODJEL

Linearna algebra 2 prvi kolokvij,

Matematička analiza 1 dodatni zadaci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

1 Pojam funkcije. f(x)

Matematički fakultet

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

18. listopada listopada / 13

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Zavrxni ispit iz Matematiqke analize 1

15. domaća zadaća. Matematika 1 (preddiplomski stručni studij elektrotehnike)

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

Matematika 1 - vježbe. 11. prosinca 2015.

Riješeni zadaci: Nizovi realnih brojeva

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

TRIGONOMETRIJSKE FUNKCIJE I I.1.

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

Linearna algebra 2 prvi kolokvij,

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Operacije s matricama

Dvanaesti praktikum iz Analize 1

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.

TRIGONOMETRIJA TROKUTA

SISTEMI NELINEARNIH JEDNAČINA

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

2. KOLOKVIJ IZ MATEMATIKE 1

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Funkcije dviju varjabli (zadaci za vježbu)

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

Zadaci iz trigonometrije za seminar

1 Promjena baze vektora

( , 2. kolokvij)

radni nerecenzirani materijal za predavanja

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.


Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Jednodimenzionalne slučajne promenljive

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Neodreeni integrali. Glava Teorijski uvod

APROKSIMACIJA FUNKCIJA

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

Transcript:

IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai ovu jednakos sa ln ( o beše prirodni logariam za osnovu e) a zaim ćemo primenii jedno od pravila vezana za logarime: ln A n n ln A logarimujemo ln ln ln ln ovo u izložiocu ide ispred logarima... sada diferenciramo ( pazi, na desnoj srani je izvod proizvoda) ln + (ln ) ln + skraimo ln + ( ln + ) sada sve pomnožimo sa ovde zamenimo sa ( ln + ) je konačno rešenje!

Primer. Nadji izvod funkcije () sin Posupak je isi: logarimujemo, pa pravilo za log., pa sredjujemo () sin ln ln () sin ln sin ln() prebacimo sin ispred logarima sada diferenciramo (sin) ln() + [ln()] sin Pazi ln() je izvod složene funkcije ln() + () sin ln() + (-sin) sin prisredimo malo ln() - sin sve pomnožimo sa sin [ ln() - ] zamenimo () sin () sin sin [ ln() - ] je konačno rešenje

Primer 3. Nadji izvod ln sin sin ln logarimujemo ln ln ln sin ln ln sin ln diferenciramo, pazimo jer na desnoj srani je izvod proizvoda a ima i složena funkcija... ln (sin)ln ln + [ln ] sin ln ln ln ln + ( ) sin pazi ln mora kao izvod količnika ln ln + ln ( ln) sin ln ln + ln ( ln) sin skraimo po jedno i sredimo ln ln ( ln) + sin ln sve pomnožimo sa ln [ ln ( ln) + sin] ln zamenimo ln sin ln sin ln [ ln ( ln) + sin] ln kraj zadaka

IZVOD FUNKCIJE DATE U PARAMETARSKOM OBLIKU Ako u funkciji f() promenljive i zavise od paramera ( () i () ), prvi izvod funkcije f() se računa po formuli : Primer. Izračunai prvi izvod funkcije zadae u paramearskom obliku: i 4 3 odavde je 4 3 odavde je 4 3 Sada i ubacimo u formulu: 4 3 i evo rešenja! Primer. Izračunai prvi izvod funkcije zadae u paramearskom obliku: r r sin ( pazimo jer r je kao konsana pošo radimo po ) r - r sin r sin r r skraimo r r sin sin - cg konačno rešenje

Primer 3. Izračunai prvi izvod funkcije: + sin i sin + sin odavde je - sin + [ sin + (sin)] - sin + sin + sin pa je [ + () ] + sin sin sin sin g IZVOD IMPLICITNO ZADATE FUNKCIJE Kada je funkcija f() zadaa u implicinom obliku F(,) 0, njen prvi izvod dobijamo iz relacije: Primer. d d F(, ) 0 Izračunai prvi izvod funkcije: 3 0 Obeležimo sa F(,) 3 Ša je ovde šos? Od članova sa -som ražimo normalno izvode, a kod onih gde se javlja i (ipsilon) nadjemo izvod i dodamo još. Tako da u našem primeru od 3 izvod je 3, od izvod je a od je izvod. Dakle: F(,) 3 d d F(, ) 3 - - pa sad ovo izjednačimo sa 0 3 - - 0 odavde sada izrazimo i o je o. 3 + 3 3 (+) pa je (+ ) konačno rešenje

Primer. Izračunai prvi izvod funkcije: + + + 6 0 F(,) + + + 6 Pazimo : mora kao izvod proizvoda! d d F(, ) + + + + + + 0 odavde moramo da izrazimo + - ( + ) - pa je + konačno rešenje Primer 3. Izračunai prvi izvod funkcije: e 3 3 Možemo odmah diferencirai, a možemo prvo oformii funkciju F(,), kako više volie! Mi ćemo odmah diferencirai : e 3 3 e () 3 3 e ( + ) 3 3 e + e 3 3 sada da izrazimo e + 3 3 - e ( e + 3 ) 3 - e pa je odavde 3 e e + 3 konačno rešenje

Primer 4. Izračunai prvi izvod funkcije: 0 Ovde je malo eža siuacija, jer moramo da logarimujemo funkciju pa ek onda da ražimo izvod. ln ln ln ln logarimujemo izložioce prebacimo ispred ln... sada izvod, ali kao izvod proizvoda! ln + ln + ln - ln - (ln - ) ln - i izrazimo ln ln konačno rešenje IZVOD INVERZNE FUNKCIJE Neka funkcija f ima prvi izvod različi od 0 na nekom inervalu i neka je g njena inverzna funkcija. Tada i g ima izvod i pri ome važi: g ( ) f ( g( )) Česo se ova formula zapisuje u obliku : a može i

Primer. Ako je arcsin, -, Pošo je arcsin, ada je sin, primenimo π π, da nadjemo izvod od! i dobijamo: (arcsin) (sin) {sad iskorisimo da je sin + o jes sin } sin { sad vraimo da je sin } Znači, dobili smo da je (arcsin) Primer. Ako je arcg i < < i π π da nadjemo izvod od! Kako je arcg o je inverzna funkcija g, pa primenimo : (arcg) ( g ) {kako je sin + } sin + sin + + g a kako je g + Dakle: (arcg) +

Primer 3. Ako je log a, a>0, a, >0 i < <, da nadjemo izvod. Inverzna funkcija za log a je a, pa je po formuli : (log a ) znamo da je izvod od a a lna ( a ) a lna lna i sad samo zamenimo da je a Dakle : (log a ) lna